

Detection of Nitrogen and Phosphorus Nutrient Status in Bermudagrass Using Spectral Radiance

H. Sembiring,^a W. R. Raun,^{a,1} G. V. Johnson,^a M. L. Stone,^b J. B. Solie,^b and S. B. Phillips^a

^aDepartment of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078-0507

^bDepartment of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078-0507

ABSTRACT

Nitrogen (N) and phosphorus (P) are two of the most limiting nutrients for crop production. Because of this, continued interest focuses on improving Nand P-use efficiency. Spectral radiance measurements were evaluated to identify optimum wavelengths for dual detection of N and P status in bermudagrass (*Cynodon dactylon* L.). A factorial arrangement of treatments (0, 112, 224, and 336 kg N ha⁻¹ and 0, 29, and 58 kg P ha⁻¹) was applied to an established bermudagrass pasture for further study using a randomized complete block design. A wide range of spectral radiance measurements (276-831 nm) was obtained from each plot using a PSD1000 Ocean Optics fiber optic spectrometer. The resulting spectra were partitioned into 10-nm bands.

¹Corresponding author (e-mail address: wm@soilwater.agr.okstate.edu).

1191

TABLE 1. Initial surface (0-15 cm) soil test characteristics, Burneyville, OK, 1996.

Characteristics	Extractant	Unit	Value
рН	1:1 soil:H2O		5.68
Organic Carbon [®]	Dry Combustion	g kg l	9.564
Total Nitrogen [®]	Dry Combustion	g'kg ⁻¹	0.872
NH4-N ^{II}	2 M KCl	mg kg ⁻¹	13.1
NO3-N ^{II}	2 M KCI	mg kg ⁻¹	6.4
₽ [♥]	Mehlich 3	mg kg ⁻¹	23.8
K۳	Mehlich 3	mg kg ⁻¹	163.5

Schepers et al. (1989).

¹¹Lachat Instruments (1989).

Mehlich (1984).

100

13

applied on April 18, 1996, and August 9, 1996. The plots were 3.1x9.1 m with 6.1 m alleys. Spectral readings and forage yields were collected on May 29, 1996 (the first harvest after the first fertilization), June 27, 1996 (the second harvest after the first fertilization), August 9, 1996 (the third harvest after the first fertilization), and September 13, 1996 (the first harvest after the second fertilization).

Spectral data were collected within each plot using a PSD1000 portable dual spectrometer manufactured by Ocean Optics, Inc., from two overlapping bandwidths of 276-831 nm and 650-1,100 nm. The fiber optic spectrometer which has 200 μ m diameter and no slit has spectral resolution as low as 5 nm. The bifurcated fiber was lifted with an hemispherical luciteTM lens which increased its angle of acceptance to 34°. The lens was held at 1.5 m and the area sensed was 0.8 m² plot¹.

All spectral readings were partitioned into 10 nm bandwidths. In addition to these spectral bands collected from each reading, the spectral indices NDVI (Normalized Difference Vegetation Index) and other combinations of single indices were generated. Total N in forage was determined using a Carlo-Erba (Milan, Italy) NA 1500 Dry Combustion Analyzer (Schepers et al., 1989). Total P was determined using a nitric-perchloric acid (NHO₃-HClO₄) digest and concentration determined as per a modified method developed by Murphy and Riley (1962). Nitrogen and P uptake was calculated by multiplying N or P concentration by biomass. Individual wavelengths and combinations of wavelengths (or ratios) were used to predict agronomic responses such as N and P concentration, N and P uptake, and biomass. Statistical analyses included regression, analysis of variance, and covariance. All were performed using procedures defined in SAS (SAS Institute, 1988). Since the wavelengths and indices were not consistent over time, analysis of covariance was performed for spectrometer readings. The selection criteria for covariates

1190

SEMBIRING ET AL.

Added indices were generated to test for correlation of N and P content with spectral radiance. The 435-nm band (430-440 nm) was found to be independent of N and P treatment, and as a covariate, significantly decreased residual error. Using 435 nm as a covariate, it was found that biomass, N uptake, P uptake, and N concentration could be predicted using 695/405. No index reliably predicted bermudagrass forage P concentration. Spectral radiance has the potential to be used for predicting N and P nutrient status, but further work is needed to document response in different environments.

INTRODUCTION

Recent work has documented micro-variability in soil test N and P, thus enhancing the potential use of sensor-based-variable-rate-technology (s-VRT) for fertilizer application. Optimizing fertilizer application using s-VRT may reduce N and P fertilizer input costs as well as surface and ground water contamination from over fertilization.

Light reflectance can be used to detect the nutrient element status of plants because plants have strong absorption of light by chlorophyll and near infrared reflectance (NIR) (Thomas and Oerther, 1972). In addition, organic compounds have unique absorption properties due to vibration of molecular bonds (Morra et al., 1991). However, several factors affect the reflectance such as nonuniformity of incident solar radiation, plant structure, leaf area, background reflectivity (tillage), diseases, physiological stress (Knipling, 1970) and leaf thickness (Wooley, 1971). Nutrient status affects crop performance and visual symptoms, therefore, the effect of fertilizer on plant growth may be detected using spectral radiance.

There are several existing indices that have been used to predict nutrient status. In corn, N status was estimated using spectral radiance at 550 nm (Blackmer et al., 1994) and NIR/red (Walburg et al., 1982). In winter wheat, NDV1 (normalized difference vegetation index = NIR-red / NIR+red) was used to predict N uptake and biomass (Stone et al., 1996). Milton et al. (1991) found that P deficiencies resulted in higher reflectance in the green and yellow portions of the electromagnetic spectrum. Little research has addressed the use of spectral radiance on detecting plant P deficiencies. The objective of this research was to identify indices for the dual detection of N and P status in bermudagrass.

MATERIALS AND METHODS

One study was conducted on an established bermudagrass (*Cynodon dactylon* L.) pasture near Burneyville, Oklahoma, on a Minco fine sandy loam (coarse-silty, mixed thermic Udic Haplustoll). Initial soil test characteristics are reported in Table 1. An N rate x P rate factorial arrangement of treatments (0, 112, 224, and 336 kg N ha⁻¹ with 0, 29, and 58 kg P ha⁻¹) was evaluated in a randomized complete block experimental design with three replications. Nitrogen and P fertilizers were both

Biomats N Nagata P. Plomats N Nepata P. Pequata Rim Conc. Conc. N Nepata P. Pequata Conc. Nepata P. Pequata Rim Rim<	Biomuse N Nuprate P Upmate Biomuse N Nuprate P Conc. Conc. Conc. Conc. Pupmate Conc. Nuprate Conc. Conc.<	Biomass N Naptaics P Uptaics Biomass Conc. Conc. Conc. Conc. P Uptaice Biomass no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no.	Last fertilization: April 18, 1996 Harvest: June 27, 1996	8, 1996 96		
R: H: H:<	Mean equates Mean equates<	Rise His His <th>N uptake</th> <th></th> <th>1</th>	N uptake		1	
Ministry Minis	me me<	Mile Mile <th< td=""><td>2</td><td></td><td>Ι.</td></th<>	2		Ι.	
R R	Instructure	NG NG<	11	-		
27317 1.8 8.95 1.43 6.55 1.35 1.56 1.31 1.11 1.373 1.579 16 5.77 16.0 6 17.11 1.11 1.1 1.11 1.1 1.11 1.1 1.17 1.1 1.11 1.1 1.17 9 16 18 11 <th< td=""><td>20217 15 80.2 15.4 0.55 13.6671 3.4 11.1 5790 16 </td><td>Ministry Ministry Ministry</td><td>SI</td><td></td><td>SE</td></th<>	20217 15 80.2 15.4 0.55 13.6671 3.4 11.1 5790 16	Ministry	SI		SE	
If 5.7 16.0 6 17.1 4.1 7.1 37.7 9 9 9 In In In In In In In 11.1 37.7 9 <t< td=""><td>Id 5.7 16.0 6 17.1 41 71.1 37.7 9 Lic </td><td>IB 5.7 16.0 6 17.1 41 Lic H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 2738 714 246 1902 53 233 233 233 2339</td><td>711.1</td><td></td><td>ME</td></t<>	Id 5.7 16.0 6 17.1 41 71.1 37.7 9 Lic	IB 5.7 16.0 6 17.1 41 Lic H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 2738 714 246 1902 53 233 233 233 2339	711.1		ME	
Lic <td>Air · · · · · · · · · · · · · · · · · · ·</td> <td>tic 113 114 114 114 114 114 114 114 114 114</td> <td>37.7</td> <td></td> <td>IRI</td>	Air · · · · · · · · · · · · · · · · · · ·	tic 113 114 114 114 114 114 114 114 114 114	37.7		IRI	
Medianic ••• ••	mediantic ····· ···· ····	Madratic *** **	;		NG	
	metric IIS IIS<	Mear IIS IIS <td>2</td> <td></td> <td>ET</td>	2		ET	
			2		Γ A	
ha ¹ Iggha ¹ gfkg ¹ kgha ¹ Means- 1667 14.4 24.6 1597 2.7 2151 18.3 38.8 2735 2736 20.3 55.4 1907 5.7 2897 2.7 2151 18.3 38.8 2735 2781 26.6 72.8 2131 5.9 2821 22.5 55.4 2713 2781 26.6 72.8 2131 5.9 2821 22.9 91.8 22.45 2781 26.6 72.8 2131 5.9 2821 22.9 91.8 22.45 2781 26.6 72.8 2131 5.9 28.11 22.9 91.8 22.45 2781 26.5 26.7 27.2 28.1 22.9 91.8 22.45 2781 21.2 53.9 0.4 52.8 0.9 12.6 121 2633 21.2 53.3 4.6 265.2 26.4 2713 2633 21.2 53.9 0.4 52.8 0.9 12.6 2558 21.3 53.3 23.3 23.3 23.3 23.3 2558 21.3 53.3 26.4 26.7 <td>Image Regnard Regnard</td> <td></td> <td>2</td> <td></td> <td>J.</td>	Image Regnard		2		J.	
	ha ⁻¹ kgha ⁻¹ gkg ⁺ kgha ⁻¹ mgkg ⁺ kgha ⁻¹ mgkg ⁺ kgha ⁻¹ mgkg ⁺ kgha ⁻¹ mgkg ⁺ res 2151 18.3 38.8 2265 2738 20.3 55.4 1902 5.2 2897 22.5 65.4 2713 3043 23.8 71.4 2137 6.4 3132 22.5 65.4 2713 3043 23.8 71.4 2137 6.4 3132 22.5 65.4 2713 3043 23.6 71.4 2131 5.9 2821 32.9 206 3314 2715 0.6 7.2 5.9 0.4 5.9 2821 32.9 313 215 0.6 7.2 5.9 0.4 5.8 0.9 12.6 121 263 21.3 5.9 1823 4.6 265.2 2879 3224 263 21.3 5.9 1823 4.6 265.2 26.4 69.3 3224 253 253 253 26.3 26.4	$ ha^{-1} \begin{array}{cccccccccccccccccccccccccccccccccccc$			Sec. Sec.	
	ha ⁻¹ Igg1a ⁻¹ I	$ ha^{4} kg^{4}ha^{4} g^{4}g^{4} kg^{4}ha^{4} mg^{4}g^{4} kg^{4}ha^{4} kg^{4} kg^{4}ha^{4} kg^{4} $				
	ta^{-1} kgha ⁻¹ <	tha ⁻¹ kg/ha ⁻¹ g/g ⁻¹ kg/ha ⁻¹ -1 -1 <th kg<="" td=""><td></td><td></td><td>N.</td></th>	<td></td> <td></td> <td>N.</td>			N.
	2738 203 55.4 1902 5.2 2897 22.5 65.4 2713 7.8 2781 26.6 72.8 2137 6.4 3132 29.1 86.6 314 98 2781 26.6 72.8 2131 5.9 2821 32.9 91.8 324 92 215 0.6 4.2 59 0.4 528 0.9 12.6 121 15 215 0.6 4.2 59 0.4 528 0.9 12.6 121 15 213 5.9 0.4 5.9 2821 32.9 91.8 32.4 92 213 59.0 1823 4.6 2652 26.4 69.3 2829 75 2333 21.3 59.0 1823 4.6 2652 26.4 69.3 75 2558 21.2 53.9 1823 5.3 2728 2870 75 2558 21.2 55.2 20.3 26.4 75 2977 8.1 2558 <	2738 203 554 1902 52 2897 3043 23.8 71.4 2137 6.4 3132 2781 26.6 72.8 2131 5.9 2821 215 0.6 4.2 59 0.4 528 215 0.6 4.2 59 0.4 528 213 59 0.4 53 2821 213 59 1823 4.6 528 2633 21.2 53.9 1823 4.6 2653 2633 21.2 55.2 2035 5.3 2728 2653 21.2 55.2 2035 5.3 2728 2653 21.2 55.3 2035 5.3 2728 2653 3.7 51 0.4 458	kg'ha' ¹ 39 e		ANI	
	$\mathbf{ha}^{4} = \begin{array}{ccccccccccccccccccccccccccccccccccc$	3043 23.8 71.4 2137 6.4 3132 2781 26.6 72.8 2131 5.9 2821 215 0.6 4.2 59 0.4 528 215 26.6 72.8 2131 5.9 2821 215 26.6 72.8 2131 5.9 2821 213 29.0 0.4 5.3 2653 2633 21.2 53.9 1823 4.6 2653 2653 21.3 59.0 1967 5.3 2728 2558 21.2 55.2 2035 5.3 2870 186 0.5 3.7 51 0.4 458	65.4) P (
215 0.6 4.2 59 0.4 528 0.9 12.6 121 15 Ma ⁺ 2481 21.2 53.9 0.4 528 0.9 12.6 121 15 2481 21.2 53.9 1823 4.6 2652 26.4 69.3 2829 7.5 2633 21.3 59.0 1967 5.3 2728 2600 72.2 2972 8.2 2558 21.2 55.2 2035 5.3 2870 24.7 70.5 2877 8.1 186 0.5 3.7 5.1 0.4 458 0.7 10.9 105 1.3	215 0.6 4.2 59 0.4 528 0.9 12.6 121 15 Ma ⁴ 2481 21.2 53.9 1823 4.6 2632 26.4 69.3 2829 75 2633 21.3 59.0 1823 4.6 2632 26.4 69.3 2829 75 2538 21.2 55.2 2035 5.3 2728 26.7 70.5 2877 8.1 2558 21.2 55.2 2035 5.3 2870 24.7 70.5 2877 8.1 186 0.5 3.7 51 0.4 458 0.7 10.9 105 13 ****Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. respectively. 130.9 105 13	ha ⁻¹ 215 0.6 4.2 59 0.4 528 2481 21.2 53.9 1823 4.6 2652 2633 21.3 59.0 1967 5.3 2728 2558 21.2 55.2 2035 5.3 2870 186 0.5 3.7 51 0.4 458	80.0 91.8		NU	
2481 21.2 53.9 1823 4.6 2652 26.4 69.3 2829 7.5 2633 21.3 59.0 1967 5.3 2728 26.0 7.2 2827 7.5 2633 21.3 59.0 1967 5.3 2728 26.0 7.2 2972 8.2 2558 21.2 55.2 2035 5.3 2870 24.7 70.5 2837 8.1 186 0.5 3.7 51 0.4 458 0.7 10.9 105 1.3	2481 21.2 53.9 1823 4.6 2652 26.4 69.3 2829 7.5 2633 21.3 59.0 1967 5.3 2728 26.0 72.2 2972 8.2 2558 21.2 55.2 2035 5.3 2870 24.7 70.5 2977 8.1 186 0.5 3.7 51 0.4 458 0.7 10.9 105 1.3 *Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.	2481 21.2 53.9 1823 4.6 2652 2633 21.3 59.0 1967 5.3 2728 2558 21.2 55.2 2035 5.3 2870 186 0.5 3.7 51 0.4 458	12.6		IRIE	
2633 21.3 59.0 1967 5.3 2728 26.0 72.2 2972 8.2 2558 21.2 55.2 2035 5.3 2870 24.7 70.5 2972 8.2 2558 21.2 55.2 2035 5.3 2870 24.7 70.5 2972 8.1 186 0.5 3.7 51 0.4 458 0.7 10.9 105 1.3	2633 21.3 59.0 1967 5.3 2728 26.0 72.2 2972 8.2 2588 21.2 55.2 2035 5.3 2870 24.7 70.5 2972 8.2 186 0.5 3.7 51 0.4 458 0.7 10.9 105 1.3 *****Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. =not significant.	2633 21.3 59.0 1967 5.3 2728 2558 21.2 55.2 2035 5.3 2870 186 0.5 3.7 51 0.4 458	1.09		ent s	
2558 21.2 55.2 2035 5.3 2870 24.7 70.5 2837 8.1 186 0.5 3.7 51 0.4 458 0.7 10.9 105 1.3	2558 21.2 55.2 2035 5.3 2870 24.7 70.5 2837 8.1 186 0.5 3.7 51 0.4 458 0.7 10.9 105 1.3 •••••••Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. =not significant.	2558 21.2 55.2 2035 5.3 2870 186 0.5 3.7 51 0.4 458	72.2		STA	
	05, 0.01, and 0.001 probability levels, respectively.		70.5 10.9		TUS	

1193

,

1192

۳,

Ľ,

.

Analysis of variance for total forage N, N uptake, total P concentration, P uptake, August 9 and September 13, Burneyville, OK, TABLE 3. 1996.

		Last fer Hi	Last fertilization: April 18, 1996 Harvest: August 9, 1996				Last ferti Harvest:	lization: Augu September 13,	st 9, 1996 , 1996	
ource of ariation	Biomass	Conc. Conc.	N Nuptake P Conc. Conc.		P uptake	Puptake Biomass N Nuptake P Puptake Conc. Conc.	Conc	N uptake	P Conc.	P uptake
					Mean squares	quares				
Rep	8	2	8	2	2	2	5U	80	SU	50
rate	50	:	:	:	:	:	:	:	:	:
Calco	26	SU	SU	ž	SU	D5	:	215	511	50
4	SU	SU		5	SU	Dis Dis	SU	50	Str	313
csidual	898846	1.9	402.3	119479	15.5	1913863	1.2	946.4	105319	17.0
V, 45	18	7.4	20.5	0	19.5	24	5.1	24.2	0	19.6
ontrasts;										
N linear	ns	:	:	:	:	:	:	;;	;;	:
N quadratic	SU	2	ns	SU	SU	:	•	:	::	:
P linear	Str	SU	DS	DS DS	US	SU	•	R	Sci	SU
P quadratic	50	şu	DS DS	2	50	SU	•	SU	SU	SU

kgta¹ 11.5 22.4 22.5 19 19 19.6 21.7 21.9 mgkg⁻¹ 3095 3252 4026 4059 153 3574 3588 3661 132 kgtha⁻¹ 62.5 143.1 142.9 159.8 14.5 124.6 126.6 129.9 8kg¹ 16.9 25.2 25.2 0.5 22.3 21.3 0.4 kgtha⁻ⁱ 3703 6932 6386 652 652 S B D S Σ kgta^r 16.0 20.4 19.9 1.9 1.9 19.4 20.2 1.1 1.6 mg kg⁻¹ 3362 3662 4093 163 163 3837 3763 3858 141 kgha⁴ 67.7 97.9 98.0 126.7 9.5 93.9 95.9 103.1 8.2 gtg.¹ 14.1 14.1 17.8 20.5 22.4 0.7 19.1 18.4 18.6 0.6 kgtua¹ 4765 5583 4885 5762 447 N, kgtha⁻¹ 0 224 336 SEU P, kgtu⁻¹ 0 58 SED

* ****Significant at the 0.03, 0.01, and 0.001 probability levels, respectively. ns=not significant. SED=standard error of the difference between two equally replicated means.

なるななのであるというな

調査の

4.92

1. State 1.

State State

N AND P NUTRIENT STATUS IN BERMUDA GRASS

1195

Source of variation	đ	725/535	695/405	IVUN	ISNA	805/695	
May 29, 1996			W	Mean squares			
Rep	7	;		. 2	SU	50	
N rate	Ś	:	***	***	:	I	
P rate	7	•	Su	SU	911	SU	
NxP	ø	515	50	9U	SU	ŝ	
w435	-	Ŧ	22	ns	ns	SU	
Contrasts:	-				4		
				::			
N quadranc	- .	2		:	:	•	
P linear	•	•	S	SU	80	SU	
P quedratic		2	30	SC _	22	N å	
	21	0.003	0.003	0000	0.003	0.019	
		2.0	2.5	2.7	2.7	4.1	
N rate, kgna .				Means			
		2.765	2.427	0.513	1.949	3.116	;
711		1/87	PC2.2	242.0	1.822	3.438	SE
477		7,860	2.242	0.549	1.823	3.440	М
936		2.900	2.229	0.555	1.801	3.500	BI
		0.027	0.027	0.007	0.024	0.066	RI
r lauc, sgna		1 810	1 107	0 63.4		900 E	NG
29		2 865	1 202	245	7/0/7	567°C	E
58		2.872	2.275	0.546	2001	2 412	T
SED		0.023	0.024	0.006		1200	٩L
					140-0	1000	•
	整 、	のないたいのないないではないのであるという				「「「「「「」」」	
June 27, 1996			M	Mean squares			N
Rep	6 4 (8	2 4	ß	2	2	AN
N rate	5 1 (SU	Þ	SU	811	SU	D
P rate	~ •	2	ns	52	0.5	IJS	Ρ
NxP	œ,	S	22	<u>8</u>		50 ÷	N
w435 Contracts:	-	***	212	ns	8	Þ	JT
N linear		50	•	•	213	•	SIF.
N cuadratic		2	•	ΠŜ	Ĩ	ns	IN
	• •	! .		1	1	ļ	T

us 118 0.113 10.6 2.942 3.215 3.265 3.265 0.159 3.065 3.194 3.279 0.137 ns 0.031 9.1 1.923 1.923 1.906 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.072 0.72 ns ns 0.002 8.1 0.487 0.523 0.523 0.528 0.528 0.520 0.520 0.529 0.024 ns ns 0.014 4.9 2.584 2.386 2.386 2.439 2.417 0.057 2.461 2.456 2.452 0.049 • 0.005 3.2 3.033 3.080 3.080 0.035 2.301 2.328 2.380 0.030 P linear P quadratic Error CV, % V rate, kgtha⁻¹ 112 224 336 SED P rate, kgta⁴ 85 83 SED

*,••,••*Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. ns=not significant. SED=standard error of the difference between two equally replicated means.

.

1196

1197

,

N AND P NUTRIENT STATUS IN BERMUDAGRASS

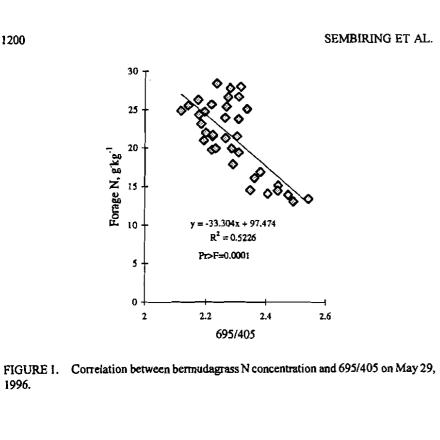
2 1 ŝ

Source of variation	đ	725/535	695/405	INDN	ISNA	805/695
August 9, 1996				Mean squares		
Rep	6	ns	ns	50	ŞU	80
N rate	ŝ	su	•	50	50	50
9	ы	su	SU	ns	50	20
NxP	6	US	SO	SU	Su	SU
w435	-	•	***	:	:	:
Contrasts;						
N linear	1	ns	**	513	ns	ŝ
quadratic	1	ns	us	ns	20	U\$
P linear	1	ПS	50	SU	SC	5U
P quadratic	1	SU	50	ns	hs	us Su
Error	21	0.011	0.003	0.000	0.345	0.001
CV, &		6.5	1.1	6.7	6.8	1.6
N rate, kg ha ⁻¹				Means		
		1.628	4.573	0.119	8.548	1.270
		1.627	4.569	0.120	8.347	1.273
		1.582	4.540	0.116	8.708	1.263
		1.576	4.496	0.115	8.806	1.259
		0.050	0.025	0.004	0.277	600.0
P rate, kg'ha-'						
1		1.592	4.551	0.116	8,683	1.263
		1.579	4.535	0.117	8.603	1.264
		1.639	4.548	0.119	8.521	1.271
		0.042	0.021	0.003	0.240	0.008

September 13, 1996						
Rep	6	SU	ns	ns	U\$	8 0
N rate	e	***	:		***	***
P rate	7	SU	us	us	ns	8
NxP	9	SU	US	U\$	DS DS	50
w435	1	***	:	***	***	***
Contrasts:						
N linear	-	•	***		***	***
N quadratic	-	***	***		***	***
P linear	-	us	Sn	50	513	81
P quadratic	-	us	50	US	ß	118
Error	21	0.001	0.008	0.000	0.002	0.089
CV &		1.0	4.1	2.8	3.2	6.2
N rate, ke ha '				Means		
. 0		2.576	2.600	0.585	1.720	3.901
112		2.630	2.128	0.669	1.503	5.164
224		2.631	2.141	0.669	1.499	5.111
336		2.615	2.187	0.660	1.517	4.931
SED		0.129	0.014	0.003	0.023	0.141
P rate, kg ha						
0		2.627	2.277	0.641	1.574	4.709
29		2.603	2.279	0.645	1.561	4.734
58		2.609	2.236	0.652	1.545	4.887
SED		0.011	0.012	0.002	0.020	0.122

N AND P NUTRIENT STATUS IN BERMUDAGRASS

*,**.**Significant at the 0.05, 0.01, and 0.001 probability levels, respectively. ns=not significant. SED=standard error of the difference between two equally replicated means.


,

1198

-

1199

.

1200

1996.

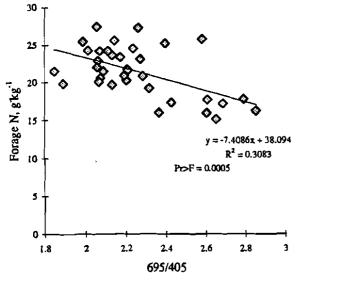


FIGURE 2. Correlation between bermudagrass N concentration and 695/405 on September 13, 1996.

N AND P NUTRIENT STATUS IN BERMUDAGRASS

50 C.

- প্রায় উদ্ধান্ত-

「「「

- ここのうちの「「「「「「「」」

 $\sum_{i=1}^{n}$

344 17 1

いなが正常にな

記録

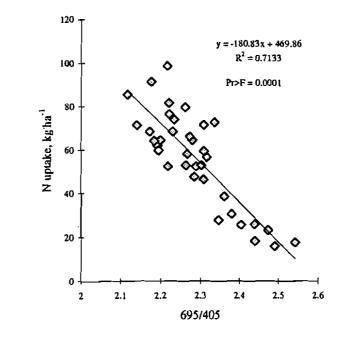


FIGURE 3. Correlation between bermudagrass N uptake and 695/405 on May 29, 1996.

included no significant effect of treatment and no correlation with dependent variables. Bandwidths which adhered to these criteria were 375, 395, 435, 445, 455, 465, 475, 485, 495, 785, 795, and 805 nm. The indices used to predict agronomic responses were chosen based on similarity in AOV.

RESULTS AND DISCUSSION

Agronomic Responses

Analysis of variance models with factorial effects of N, P, and N x P are reported in Tables 2 and 3 for biomass, N, N uptake, P and P uptake for the three dates where comprehensive data were collected. Similar to the first fertilization, no significant interaction of N and P was detected for the second fertilization (Tables 2 and 3) thus allowing direct interpretation of main effects of N and P independently. Fortyone days following the first fertilization, a significant quadratic response to N fertilization was found for dry biomass, N concentration, N uptake, P concentration, and P uptake. This result suggests that N was limiting response since increases

1201

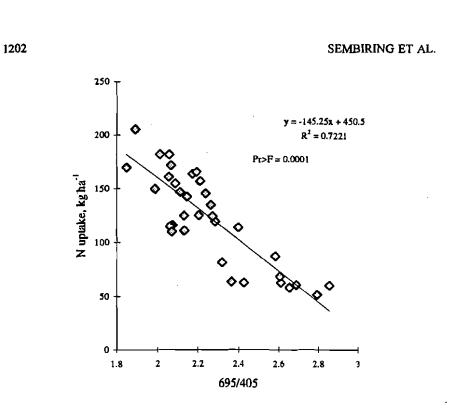


FIGURE 4. Correlation between bermudagrass N uptake and 695/405 on September 13, 1996.

with N rate were shown for biomass, N concentration and N uptake, P concentration and P uptake. It was interesting to find that N rate influenced P concentration in bernudagrass tissue. As N rate increased, P concentration increased (Tables 2 and 3). Following 71 and 113 days from the first fertilization, a linear response to N rate was observed for N concentration, and N and P uptake. Tissue P concentration responded linearly to N applied 41 days following the first fertilization. A linear trend for increased N to increase biomass, N concentration, N uptake, P concentration and P uptake by the second fertilization was also observed (Table 3).

Spectrometer Readings

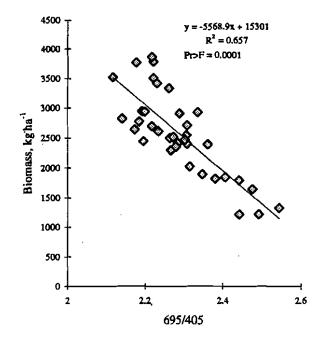
į,

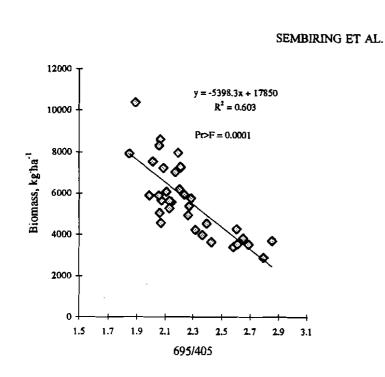
If significant differences in measured biological variables were found, we expected reflectance changes to be significant as well. However, no one index was consistently related to measured plant response over time. It was thought that the consistency of one index over multiple sampling dates could be increased using P 「「「「「「「「「」」」」」」

;4¢

ŝ

Ż




FIGURE 5. Correlation between bermudagrass biomass and 695/405 on May 29, 1996.

covariance. The 435 nm band (430-440 nm) was found to be independent of N and treatment, and as a covariate, significantly decreased residual error (Tables 4 and 5). This was consistent over several cuttings, but results did vary with time in terms of the percentage error accounted for by the 435 nm covariate.

The indices which behaved similarly to observed differences in N concentration over time (means and significance of AOV) were 695/405 and NDVI. The effect of N rate was highly significant for N concentration as well as 695/405 and NDVI. The relationship between 695/405 and forage N concentration for the May 29, 1996 and September 13, 1996 dates is reported in Figures 1 and 2, respectively. Although both indices were not highly correlated with forage N, they were significant (Probability of greater F value from the model, P>F).

Similar to results for N concentration, 695/405 was highly correlated with N uptake (Figures 3 and 4). It was important to find a consistent, positive relationship with N uptake even when values changed significantly with time (100 kg N ha⁻¹ versus 200 kg N ha⁻¹ from May 29 to September 13, 1996).

No consistent index or 10 nm band was correlated with P concentration at any sampling date. However, similar to N uptake, the index that best predicted P uptake was 695/405. This index was obviously providing good prediction of biomass

A ANALYSI A

- 2

ŵ

1

'γ

6

- 10-2-

13

「ない」のできょう

FIGURE 6. Correlation between bermudagrass biomass and 695/405 on September 13, 1996.

since similar response in N and P uptake was observed. Correlation between 695/ 405 and P uptake was good for both May 29 and September 13 harvest dates. It is important to note that several indices were positively correlated with biomass (NDVI and 695/405). NDVI has been commonly used to predict biomass which was consistent with what is reported here. Correlation between biomass and 695/405 is presented in Figures 5 and 6 for May 29, 1996 and September 13, 1996; and biomass with NDVI in Figures 7 and 8, respectively. Using a linear model, correlation with dry biomass was consistently better using 695/405 when compared to NDVI.

CONCLUSIONS

The 435 nm band (430-440 nm) was found to be independent of N and P treatment, and as a covariate, significantly decreased residual error. Using 435 nm as a covariate, it was found that N uptake, P uptake, and N concentration could be predicted using 695/405; whereas, biomass was best predicted using NDVI. However, no index reliably predicted bermudagrass forage P concentration. Spectral radiance has the potential to be used for predicting N and P nutrient status, but further work is needed to document response in different environments.

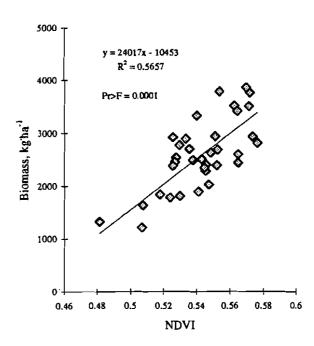


FIGURE 7. Correlation between bermudagrass biomass and NDVI on May 29, 1996.

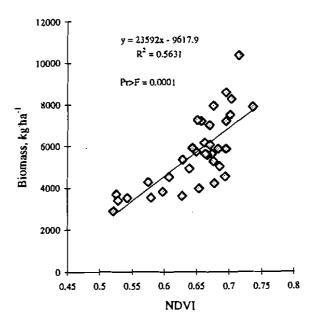


FIGURE 8. Correlation between bermudagrass biomass and NDVI on September 13, 1996.

SEMBIRING ET AL.

.

A STATE OF A

簗

Salar Salar Salar

REFERENCES

- Blackmer, T.C., J.S. Schepers, and G.E. Varvel. 1994. Light reflectance compared with nitrogen stress measurements in corn leaves. Agron. J. 86:934-938.
- Knipling, E.B. 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing Environ. 1:155-159.
- Lachat Instruments. 1989. Quickchem Method 12-107-04-1-B. Lachat Instruments, Milwaukee, WI.
- Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416.
- Milton, N.M., B.A. Eiswerth, and C.M. Ager. 1991. Effect of phosphorus deficiency on spectral reflectance and morphology of soybean plants. Remote Sensing Environ. 36:121-127.

- SAS Institute. 1988. SAS/STAT Procedures. Release 6.03 ed. Statistical Analysis System Institute, Cary, NC.
- Schepers, J.S., D.D. Francis, and M.T. Thompson. 1989. Simultaneous determination of total C, total N, and ¹⁵N on soil and plant material. Commun. Soil Sci. Plant Anal. 20:949-959.
- Stone, M.L., J.B. Solie, W.R. Raun, R.W. Whitney, S.L. Taylor, and J.D. Ringer. 1996. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Trans. ASAE 39(5):1623-1631.
- Thomas, J.R. and G.F. Oerther. 1972. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agron. J. 64:11-13.
- Walburg, G., M.E. Bauer, C.S.T. Daughtry, and T.L. Housley. 1982. Effects of nitrogen nutrition on the growth, and reflectance characteristics of corn canopies. Agron. J. 74:677-683.
- Wooley, J.T. 1971. Reflectance and transmittance of light by leaves. Plant Physiol. 47:656-662.

JOURNAL OF PLANT NUTRITION, 21(6), 1207-1233 (1998)

Detection of Nitrogen and Phosphorus Nutrient Status in Winter Wheat Using Spectral Radiance

H. Sembiring,^a W. R. Raun,^{*,1} G. V. Johnson,^a M. L. Stone,^b J. B. Solie,^b and S. B. Phillips^a

^aDepartment of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078-0507

^bDepartment of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078-0507

ABSTRACT

Nitrogen (N) and phosphorus (P) are major limiting nutrient elements for crop production and continued interest lies in improving their use efficiency. Spectral radiance measurements were evaluated to identify optimum wavelengths for dual detection of N and P status in winter wheat (*Triticum aestivum* L.). A factorial treatment arrangement of N and P (0, 56, 112, and 168 kg N ha⁻¹ and 0, 14.5, and 29 kg P ha⁻¹) was used to further study N and P uptake and associated spectral properties at Perkins and Tipton, Oklahoma. A wide range of spectral radiance measurements (345-1,145 nm) were obtained from each plot using a PSD1000 Ocean Optics fiber optic spectrometer. At each reading date, 78 bands and 44 combination indices were generated to test for correlation with forage biomass and N and P uptake. Additional spectral radiance readings were collected using an integrated sensor which has photodiode detectors

1206

Morra, J.M., M.H. Hall, and L.L. Freeborn. 1991. Carbon and nitrogen analysis of soil fractions using near infrared reflectance spectroscopy. Soil Sci. Soc. Am. J. 55:288-291.

Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27:31-36.

^{&#}x27;Corresponding author (e-mail-address: wrr@soilwater.agr.okstate.edu).