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ABSTRACT

A system of midseason prediction of winter wheat grain yield based

on sensed plant growth properties has been established. However,

little research has been conducted to determine the relationship of

grain yield, sensed plant data, and soil electrical conductivity (EC).

This study was carried out to determine if soil EC could be useful in

better predicting wheat grain yield. During 2001 and 2002,

measurements of soil EC, normalized difference vegetative index

(NDVI), and grain yield were taken on five long-term soil fertility

experiments across Oklahoma. Results indicated that soil EC was not

better than mid-season NDVI readings at predicting grain yield at
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any location or year. A combination of soil EC and NDVI was also

less correlated with grain yield than NDVI alone. This study showed

that pseudostatic soil EC measurements did not improve upon the

in-season prediction of winter wheat grain yields that could be

successfully accomplished by using NDVI alone.

INTRODUCTION

Applications of variable rate technologies (VRT) for agricultural

production are becoming more apparent. Increased fertilizer costs,

growing environmental concerns, and pressure to increase production

on less land have resulted in a need for alternatives to current

management schemes. Identification of yield level and fertilization

based on this expected yield is an important aspect of nutrient

management, which should result in higher use efficiencies and less

environmental impact.
Methods for obtaining representative soil samples have been

developed over many years. The most widely used method involves

obtaining 15–20 soil samples that are then mixed together to obtain a

representative sample for the field. One common example of this method

is provided by Zhang and Johnson.[1] This method assumes field-level

heterogeneity. This assumption is validated by a visual observation of a

field of wheat with some degree of soil nitrogen (N) heterogeneity, which

shows that the response to soil variables (in this case, nitrogen) is very

different from one section of the field to another. However, according to

Solie et al.,[2] the variability of selected parameters, such as total soil N,

extractable phosphorus (P) and potassium (K), organic carbon (C), and

pH, was found to be significant at the meter to submeter level. This leads

one to the conclusion that the most common methods of treating soil

variability, while better than nothing, may need refinement.
Current work evaluating N use in winter wheat uses canopy

reflectance to estimate final grain yield.[3] It has been shown that

NDVI is strongly correlated with N uptake when determined at

Feekes growth stage 5 in winter wheat. The NDVI is calculated as

follows: NDVI¼ [(NIRref/NIRinc)� (Redref/Redinc)]/[(NIRref/NIRinc)þ

(Redref/Redinc)], where NIRref and Redref¼magnitude of reflected

light, and NIRinc and Redinc¼magnitude of the incident light. This,

combined with the environmental conditions conducive to plant growth

measured as days from planting to sensing where growing degree days

(GDD) are >0, results in reliable estimation of final grain yield where
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GDD¼ [(TminþTmax)/2–4.4
�C] (Tmin and Tmax being recorded from

daily data). In-season estimate of yield (INSEY) is calculated as follows:

INSEY ¼ ðNDVI=days from planting to sensing where GDD > 0Þ

The equation, however, can be improved upon. Identification of soil
parameters, such as soil moisture capacity and soil texture, could be

added to the existing INSEY equation to improve yield prediction,
provided that this kind of data can be collected at the same resolution.

Kachanoski et al.[4] have shown that field scale measurements of EC

are strongly correlated with soil moisture holding capacity, and Williams
and Hoey[5] demonstrated the correlation of EC with soil textural
properties.

Soil and plant laboratory testing has been agricultural scientists’

main tool for determining nutrient availability. Whether it be pH, cation
exchange capacity (CEC), NH4-N, NO3-N, P, K, micronutrients, or a

number of other factors, soil and plant laboratory testing has been and
will continue to be useful. Until recently, variability of soil parameters,
such as NO3-N, organic carbon, PO4-P, soil water content, and K, have

been unknown. Several studies have been conducted within the past
10 years to determine the resolution at which there is significant

difference in soil test parameters.
However, advancements in technology and the skill to interpret the

data that certain technologies will yield has opened a whole new science
of nondestructive, nonintrusive diagnostic tools. Of those tools, the one

of interest here is the spectral reflectance readings on plants and their
correlation with grain yield data. Lukina et al.[3] made substantial

progress in this area by reporting on a method to determine fertilizer N
rates by using estimates of early-season plant N uptake and potential

yield determined from in-season spectral reflectance measurements
collected between January and April. The red (671� 6 nm) and near
infrared (780� 6 nm) reflectance readings were collected from nine winter

wheat experiments that were used to refine estimates of early-season
plant N uptake at or near Feekes growth stage 5. For the early season

plant N uptake experiments, 1-m2 plots were immediately hand clipped
after sensing and were analyzed for total N. Potential grain yield

experiments were sensed in 4-m2 areas during the growing season.
Then, grain was harvested and was recorded from the same area. The
results of this study indicated that NDVI was an excellent predictor of

early season N uptake and that NDVI mid-season readings were also
positively correlated with final grain yield. The ability to predict

potential grain yield was then used in the nitrogen fertilization
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optimization algorithm (NFOA), which would result in an N fertilization
rate based on predicted need.

The basis for treating the soil at such a small scale is found in the fact
that many soil parameters vary greatly at the meter and submeter
level.[2,6] In these studies, soils were sampled at a very minute scale (0.3 by
0.3m) over a 2.13 by 21.33-m area. The resulting soil test parameters,
such as total soil N, extractable P and K, organic C, and pH, were found
to have large differences over small distances (<0.3m).

Geologists and other scientists have been using soil electrical
conductivity (EC) measurements during the twentieth century for finding
archeological sites, pollution borders, and bedrock locations and types.
However, the literature for agricultural use of soil EC measurements is
quite recent (1970s), meaning that scientists are just beginning to learn
about and correlate the EC data they record. Most recent articles on
agricultural soil EC have referenced Williams and Hoey,[5] where it was
discovered that both total soluble salts and<2 mm clay material were
correlated with apparent EC values. Since then, other soil properties have
been measured, including depth to claypan,[7] soil water storage
capacity,[4] saline-seep areas,[8] cation exchange capacity,[9] and herbicide
behavior in the soil.[10] Kitchen et al.[11] investigated the soil EC/claypan/
yield relationship. This study noted that topsoil thickness was related to a
transformed EC (1/ECa) and that there was a significant relationship
between ECa (apparent EC) and grain yield. However, they noted that
climate, crop type, and specific field information was also needed to
explain the interaction between ECa and potential yield.

The reproducibility of Veris 3100 EC readings over multiple years is
very important. In a paper presented at the Wisconsin Fertilizer, Aglime
and Pest Management Conference in 2001, Tom Doerge[12] reported that
the soil EC patterns obtained from a field can be stable over time.
Doerge[12] goes on to note that relative accuracy is maintained unless
some major soil movement by man or nature occurs. The usefulness of
the Veris 3100 EC instrument is built on the ability of the system to
reproduce similar results (field patterns, maps, etc.) from year to year.
This is also important to the farmer in that if he obtains an EC map with
the Veris instrument and is told that the data he receives is fairly accurate
for a number of years, he will most likely make management decisions
based on that data. Should the data prove to be unreliable from year to
year, the farmer will be faced with having to obtain a new set of Veris
data or continue making management decisions with the inaccurate
measurements. However, if the Veris instrument data (and their patterns)
are found to be statistically the same from year to year, the return on
investment to the farmer could be very good.
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The primary objective of this study was to improve the INSEY
equation by use of EC data obtained from the fields. Raun et al.[6] have
shown that there is significant soil test variability among<1-m2 areas.
The work noted before has correlated EC with various soil parameters,
including depth to claypan, soil water storage capacity, saline-seep areas,
and CEC. Therefore, the EC data gathered by using the Veris instrument
should yield a set of data for each field that indirectly integrates
differences in several soil parameters. This would, in turn, explain
potential problems encountered by making fertilizer recommendations by
plant sensing only, without direct reference to various soil parameters.

MATERIALS AND METHODS

This study was conducted on 5 long-term soil fertility experiments at
Stillwater 222, Efaw 301, Efaw AA, Perkins N & P, and Haskell 801 (see
Table 1 for soil characteristics at these locations). At each of these sites,
soil EC readings were taken with a Veris 3100 EC Soil Mapping
instrument during the summers of 2001 and 2002. Before the 2002
readings were taken, the instrument was tested with an instrument test
load and implement test box to ensure that it was functioning properly.
The Veris instrument uses 6 rotating soil-contacting discs placed

Table 1. Initial surface (0–15) soil test results for the Efaw AA, Efaw 301,

Haskell 801, Perkins N & P, and Stillwater 222 sites, 2001.

Location N-P-K PH

NH4-N NO3-N P K

Total

N

Organic

C

(mgkg�1) (g kg�1)

Efaw AA Check 6.0 2.5 11.3 19.9 197 0.94 10.4

Classification: Easpur loam (fine-loamy, mixed, superactive, thermic

Fluventic Haplustoll)

Efaw 301 Check 5.8 6.9 5.0 30.2 16.8 1.06 11.9

Classification: Norge loam (fine mixed, thermic Udertic Paleustoll)

Perkins N & P Check 5.4 2.6 9.1 16.5 132 0.79 7.0

Classification: Teller sandy loam (fine-loamy, mixed, thermic Udic Argiustoll)

Stillwater 222 Check 5.9 12.0 8.6 31.8 462 0.86 7.9

Classification: Kirkland silt loam (fine-loamy, mixed, thermic Pachic Argiustoll)

Haskell 801 Check 5.6 19.3 14.5 95.6 558 1.05 11.9

Classification: Shellabarger sandy loam (fine-loamy, mixed, thermic Udic

Argiustoll)
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approximately 6 cm in the soil. One pair of discs (discs 2 and 5) passes an
AC current (at 150Hz, open circuit, voltage of 25 volts) into the soil,
while the other two pairs measure the drop of the current. The Veris
3100 is capable of measuring both a shallow EC (0–30.5 cm) and a deep
EC (0–91.4 cm). The EC data taken from the readout is in mSm�1, with
no need for any calculation. The data were georeferenced by using a
Trimble (AgGPS) with differential correction (DGPS). Speed across the
field was approximately 4.8 kph, giving 1 sample for every 1.5m, and
swaths were the width of the Veris cart (2.3m).

These data were integrated into a field map for visual and statistical
comparisons with plot plans by using SSToolbox programs. The various
DGPS referenced points and EC data were converted into a surface grid
of 4 by 4m over the whole of each site by using the inverse distance
function. A surface grid was made for shallow 2001, deep 2001, shallow
2002, and deep 2002 readings at each site by using an inverse distance
function. The EC data used in statistical analysis were obtained by
several steps. First, GPS readings were taken to determine the exact place
of the yield potential (YP) plots since the data were taken over the whole
field with no reference to a plot map. Once the YP plots were accounted
for, the Veris readings were selected within the YP area to obtain an
average value for either the surface grids or the specific data points.
Contour maps for visual and statistical comparison of 2001 and 2002
Veris readings were also produced and analyzed.

Soil samples of each yield potential plot within each different
experiment were taken before fertilization in the fall of 2001 and were
analyzed for organic C, pH, EC, NH4-N, NO3-N, P, K, and total N.
Following harvest, stepwise regression was used with these variables to
identify the best predictor of yield with either single variables or a set of
variables.

Winter wheat (Triticum aestivum L.) was planted in these fields at
78 kg ha�1 with 0.19-m row spacing; NDVI readings were taken at Feekes
4, 5, and between 6 and 7. These spectral measurements were taken from
the YP plots in each experiment. The YP plots were 2� 2m within larger
existing long-term experimental plots. SeparateNDVI readings were taken
on these plots and were harvested separate from the larger plots. The
reflectance measurements were taken in two bands, RED (671� 6 nm)
and near infrared (NIR; 780� 6 nm) bandwidths.[13] To obtain the
INSEY, NDVI (Feekes 4 to 6) was divided by the number of days from
planting, where, GDD> 0.[14] Statistical analysis by using NDVI, INSEY,
and yield with EC were used to evaluate the use of Veris EC data in
improving the prediction of yield.[15] Weather data was also collected in
2002 for the week prior to taking the EC measurements (Table 2).
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RESULTS AND DISCUSSION

Veris Reproducibility

The collection of data from the Veris EC instrument was completed

in 2002. One of the first things observed with this data was that patterns

seen in the experiment in one year were also observed in the next, though

at differing intensities. Although patterns were similar, definite differ-

ences were present when studied at a small scale. Though the year-to-year

likeness was the case in most of the experiments, there were exceptions.
To determine whether the patterns were significantly different,

statistical analysis was performed on four of the experiment sites. The

data from these sites was made into a surface of 4 by 4-m grids by using

an inverse distance function. The resulting sets of data for both shallow

and deep were graphed, regressed on one another, and analyzed to

determine if the slope was equal to one. If it did not equal one, that would

infer that from one year to the next, the data were not static but only

represented significant patterns in the field. The results from this analysis

can be seen in Figs. 1 and 2. Although the graphs definitely display a

year-to-year trend, the statistical analysis shows that the slope of both

lines was significantly different from 1 (PR> t, 0.01), especially for the

Veris shallow readings. This suggests that from 2001 to 2002, the Veris

Figure 1. The relationship between 2001 and 2002 Veris shallow readings at

Stillwater 222, Efaw 301, Efaw AA, and Perkins N & P, Oklahoma.
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readings changed relative to each other. This would perhaps lead one to
call into question the reproducibility of the Veris EC readings over a
long period of time. If a static variable is to be used over a period of say
10 years for managing inputs, it needs to be unaffected by time. These
results clearly show that the Veris readings were significantly altered from
one year to the next, even though the readings remained highly correlated
with each other.

The Veris data were also tested for normality, and the results indicate
that over locations and years, not one location or year was normally
distributed. Several of the sites had left skewed distributions, and one site
(Efaw 301, 2001, deep EC) had a bimodal distribution.

Soil Test Data Relationships

Initial 15-cm deep soil test data and laboratory results from 2001 are
represented in Table 1. Simple linear regression analysis was performed
on organic C, pH, lab EC (mS/m), NH4-N, NO3-N, P, K, total N, Veris
shallow, Veris deep, and grain yield (Table 3). One interesting
observation was that the EC readings obtained from the laboratory
(via saturated paste extract) were not related to grain yield. It is
important to note that the Veris EC instrument integrates combined
effects of soil parameters, such as water content, clay content, and salts in

Figure 2. The relationship between 2001 and 2002 Veris deep readings at

Stillwater 222, Efaw 301, Efaw AA, and Perkins N & P, Oklahoma.

Indirect Estimates of Soil Electrical Conductivity 2647
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solution, whereas the lab EC reading is strictly a measurement of
dissolved salts or salinity. Lab EC itself was not significantly related to
yield. However, the Veris shallow reading was correlated with the lab EC
with simple correlation of r¼ 0.48. Also, the Veris deep reading was not
related to lab EC. Soil test NO3-N was negatively correlated with yield
due to the application of high N rates in the Haskell 801 long-term
fertility experiment. At this site, plots receiving high N rates have severely
reduced yields and where NO3-N has accumulated proportionately as a
function of the N rate. It was also noted that significant correlations
existed between yield and NH4-N, K, and pH.

Grain Yield and Veris Readings

The relationship between Veris readings and grain yield could be
important, even though many other independent variables may be helpful
in refining yield prediction models. In the beginning steps of this research,
the relationship between simple Veris shallow or deep readings was
observed graphically and statistically. The linear relationship between
Veris shallow and deep readings with grain yield are illustrated for all

Table 3. Correlation coefficients (r) of soil test data with grain yield and Veris

shallow and deep EC readings.

Grain

yield

Veris shallow

EC

Veris deep

EC

Lab

EC

NH4-N 0.349c �0.289b �0.359c 0.415c

NO3-N NS 0.557c NS 0.936c

P NS NS NS NS

K �0.499c NS 0.486c NS

pH 0.279b NS NS 0.414c

OC NS NS NS NS

TN NS NS NS NS

Lab EC NS 0.479c NS —

a,b,cSignificant at the 0.05, 0.01, 0.001 probability levels, respectively.

P, Mehlich III extractable phosphorus.

K, Mehlich III extractable potassium.

OC, soil organic carbon.

TN, total soil nitrogen.

Lab EC, saturated paste extract.

n¼ 99.
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years in Figs. 3 and 4. Neither Veris shallow nor deep readings were
correlated with grain yield. However, though there was no consistent
correlation over sites, there were two site-years that were significant:
Stillwater 222 shallow Veris EC with Grain Yield, and Haskell 801 both
shallow and deep Veris EC with Grain Yield (Table 4). Regarding the
Haskell 801 site in Haskell, OK, with an increase in Veris EC, there was a
decrease in yield. This was due to the high rates of applied N on several
plots in the experiment that caused dramatic yield reductions due to
excessive salt accumulation.

Surface Response Models

The response in grain yield to changes in NDVI and Veris shallow
was altered from one year to the next, thus restricting the temporal use
of surface response models. The other independent variables evaluated
in surface response models were Veris deep, Veris shallow�Veris deep,
Veris shallow/Veris deep, Veris deep/Veris shallow, Relative Veris
shallow/Relative Veris deep. Relative Veris shallow and Relative Veris

Figure 3. Relationship between Veris shallow EC and grain yield at Perkins

N & P, Stillwater 222, Efaw 301, Efaw AA, and Haskell 801, Oklahoma,

2001–2002.

Indirect Estimates of Soil Electrical Conductivity 2649
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deep consisted of the following; (1) dividing all data points at a specific
site by the maximum reading; or (2) dividing all data points at a specific
site by the minimum reading. The rationale behind relative Veris
calculations was to provide a transformation that would take into
account the differences around the mean, thus in a sense, normalizing the
data. All of these transformations showed less significant trends, and
none yielded a better model than Veris shallow and NDVI with grain
yield.

Stepwise Regression Analysis

Soil test data, Veris EC readings, NDVI, and INSEY readings over
all sites and years were all entered into a stepwise regression procedure to
obtain possible variables that would improve the prediction of yield.
Those variables that were found to best predict yield were NDVI, soil
NO3-N, and Veris deep EC. The following equation, using those
three variables, was obtained: Yield¼�1.418� 0.0037 (deep EC)� 0.0066
(NO3-N)þ 6.811 (NDVI). This equation had an R2 of 0.71. Although it
was stated before that Veris deep readings were not correlated with grain

Figure 4. Relationship between Veris deep EC and grain yield at Perkins N & P,

Stillwater 222, Efaw 301, Efaw AA, and Haskell 801, Oklahoma, 2001–2002.
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yield, it appears that the deep readings did improve multiple regression
grain yield prediction a small amount.

CONCLUSIONS

Soil EC measurements were not useful for predicting grain yields in
rainfed winter wheat. Although EC has been found to be correlated with
grain yields in other studies, this work does not support this finding. Soil
EC has been shown to be influenced by many variables, including soluble
salts, depth to clay pan, soil moisture, soil texture, and surface horizon
depth. Therefore, finding correlation of soil EC with yield is likely the
exception rather than the rule, since the expression of each is influenced
by temporal variability and spatial scale.
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