

Harvest Date Effects on the Relationship Between Spectral Reflectance and **Energy Cane Yield**

Marilyn Dalen, Saoli Chanda, Brandon White, Payton Dupree, Daniel Forestieri, Tapasya Babu, Wooiklee Paye, and Brenda Tubana School of Plant, Environmental, and Soil Sciences, Louisiana State University, Baton Rouge, LA

INTRODUCTION

- > Energy cane production in Louisiana can potentially play a major role in the establishment of lignocellulosic biofuel industry in the United States.
- > One of the leading crops being considered as a source of feedstock is energy cane that could yield up to ten times more ethanol per hectare than corn.
- Depending on crop age, cane is harvested between October to December thus the supply of feedstock from this energy crop may be available for only few months during the year.
- > One of the essential facets to achieve full-scale commercialization of lignocellulosic-based biofuel industry is the accessibility to year-round supply of high quality feedstock.

OBJECTIVES

- > To evaluate the relationship between spectral reflectance and energy cane yield as affected by different harvest dates. > To determine the effect of nitrogen (N) rates and harvest
- dates on energy cane yield and N uptake.

MATERIALS AND METHODS

- **Research Site:** LSU AgCenter Sugar Research Station, St. Gabriel, Louisiana.
- > Treatment Structure and Experimental Design: 2 x 4 factorial treatment structure was arranged using split plot in randomized complete block design with four replications. The main plot was the energy cane varieties (Ho 02-113 and US 72-114). The sub-plot was the nitrogen rates (0, 56, 112, and 224) kg N ha⁻¹).

> Harvesting:

- Two- and one-month earlier than scheduled harvest - Fifteen stalks per plant were manually cut from the base (Photo 1a and 1b).
- Scheduled harvest date
- Fifteen stalk per plot were manually cut before harvesting the entire plot with a combine.
- Millable stalks were cut using combine harvester and loaded to wagon with load cell to determine plot weight (Photo 1c).

MATERIALS AND METHODS

- > Field data collection:
- Canopy reflectance readings were collected using Jaz[®] hyperspectral spectrometer (300 to 1100 nm) from a $1.0 \text{ m}^2 \text{ area.}$
- Three spots per row were flagged; a total of 9 spots/plot.
- Reflectance readings were taken from each spot (Photo 2a and 2b). Nine spots remained undisturbed for the entire crop growth duration wherein reflectance readings were taken twice a month until one month prior to scheduled harvesting.
- Simple Ratio (SR) and Normalized Difference Vegetation Indices (NDVI) were computed using the following formula:

 $\frac{\rho_{NIR}-\rho_{red}}{\rho_{red}}$

 $\rho_{NIR} + \rho_{red}$

- $SR = \frac{\rho_{NIR}}{\rho_{NIR}}$
- Processing:
- Fifteen stalks were partitioned into stems and leaves and weighed separately.
- Cleaned stalks were shredded and passed through the SpectraCane Near Infrared System to determine the quality parameters such as BRIX, sucrose and fiber content (Photo 3a and 3b).
- Sub-samples of the shredded stalks were collected for C:N analysis (Photo 3c).
- > Data analysis: The relationships of vegetation indices with biomass and millable stalks were determined using regression analysis in Excel while test for significant effect of N and variety was done using ANOVA in SAS 9.3.

RESULTS AND HIGHLIGHTS

> Vegetation indices computed from reflectance readings at 670 nm showed relatively good relationships with millable stalks harvested at different dates. The sampling time where SR and NDVI showed a good correlation with millable stalk yield was at eight weeks after N application for plant cane cropping (Figures 1A and 1B) and fourteen weeks after N application for first ratoon cropping (Figures 2A and 2B).

Figure 4. Effect of nitrogen and harvest date on nitrogen uptake of energy cane variety Ho 02-113 and US 72-114 for plant cane (A) and first ratoon (B) cropping.

- Simple Ratio and NDVI had a slightly higher coefficient of determination, r^2 =0.48 and r^2 =0.43, respectively when millable stalk was harvested at scheduled date and showed a decreasing r^2 values with earlier harvesting dates.
- > Millable stalk yield was generally higher when harvested at earlier dates with an average yield of 101 and 85 Mg ha⁻¹ for plant cane and first ratoon, respectively. Also, yield increased with increasing N rate for both plant cane and first ratoon cropping (Figures 3A and 3B).
- > Cane harvested at scheduled harvest date showed: 1) higher N uptake for plant cane and first ratoon (128 and 217 kg N ha⁻¹) than those harvested at earlier dates, and 2) N uptake increased with N application rate (Figures 4A and 4B).