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WILLIAM H. SWALLOW, Department of Statistics, North Carolina State University, Raleigh

Duncan’s, LSD, etc.

Mean separation or multiple com-
parison procedures are widely used in
analyzing scientific data, usually as
follow-up procedures after an analysis of
variance has been performed. Once 2
significant Fhas indicated thata group of
reatment means are not all equal, one
. urally wishes to explore the treatment
siiferences further, One way this is often
done is with a mean sepasation
procedure, usually by making pairwise
comparisons of the treatment means in
question.

The mean separation procedures most

! often used are Duncan's and Newman-

Keuls' multiple range tests, the LSD
(least significant difference). the HSD
{Tukey's w or honestly significant
difference), and Waller-Duncan's pro-
- dure (5). These procedures are used for
more often than they ought to be.
however. They are nor all-purpose
procedures for comparing means indis-
criminately, nor were they ever intended
1o be. When Petersen (4) scanned the
1975 valume of the Agronomy Journal,
he noted that 405 of the papers used a
mean scparation procedure {usually
Duncan's). He concluded that 405 of
those applications were “entirely
inappropriate,” 30¢ could have used a
more suitable analysis, and only 30%
used 3 mean separation procedure
appropriately. Despite a number of
papers on this subject (1-4), abuses of
these procedures are still very easy to
find.

So when is it inappropriate (o use a
mean separation procedure? The answer
lies in considering the treatment design,
by which I mean the nature of the
iteatments in the experiment and their
.nterrelationships. Mean separation
procedures were developed for cases
where the treatment set lacked structure,
that is, where the treatments were just a
coilection of varieties or perhaps
chemicals with no particular inter-

" relationships. Most treatment designs are

not of this type. Usually, the treatment set
has a structure, and the statistical analysis
should recognize that structure. When
that structure is ignored in the statistical
analysis, as it is when a mean separation
procedure is used to make all pairwise
comparisons, then the statistical analysis
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will not be the best (most pertinent)
analysis and may be eatirely inappropriate.

The following examples provide a basis
for discussion of the most common
misapplications of mean separation
procedures. For verisimilitude, examples
1 and 2 are closely based on misapplica-
tions published recently, but the data
have been aliered to obviate citing
specific papers for abuses that are
widespread. _

‘Example ‘1. Quantitative {reatments.

Perhaps the most glaring abuse of a mean:
separation _procedure is . using-it.on a

gradient treatment design. that is. a set of
treatments that are increasing “dosages”
of a quantitative factor. Examples of such
treatments include dosages or concentra-
tions of a chemical treaiment, row
spacings. times of application, and
temperatures. That the levels or dosages
may be planned. not random, is seldom
relevant.

Table | illustrates a possible presenta-
tion associated with this misuse of a mean
separation procedure, Toask whether the
first treatment level differs from the
second, then from the third, then from the
fourth, etc., by making all pairwise
comparisons of means, as is done in Table
I. ignores the logic of the treatment
design. The focus of a gradient treatment
design is to investigate the “dose-
response™ relationship. To do that, one
should plot the response (Y} against the
treatment levet (X) and look for an
eguation describing the refationship
between Y and X. If theory suggesis a
meaningful mathematical form for that
equation, then fitting an equation of that
form is preferable. Otherwise (usually),
one merely tries to find a simple equation
that fits the data reasonably well.
Polynomials are popular for their ease of
use and ability to fit a wide variety of
data. For this example. the quadratic
equation

Yield = 4.025.3 + 1.478.3{Ruslkill) -
349.8( Rustkill)’

accounts for over 98% of the treatment
sum of squares. (A quadratic equation fit
the real data on which this example was
based even better!) This equation not
only provides a compact summary of the
dose-response relationship (over the
range of Rustkill rates in the data—
peware of extrapolation!), butalso allows
prediction of wheat yield at treatment
levels not included in the data. For
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example, for Rustkill applied at L.15
kg/ha, the predicted wheat yield is 5,263
kg ha. Having an equation for the dose-
response relationship also can be helpful
in estimating the point (threshold) at
which treatment becomes cost-effective
or the treatment level associated with a
maximum or minimum résponse,

So, for quantitative treatments,
estimating the dose-response relationship
(or, in higher dimensions, the response
surface) through curve fitting is appro-
priate. Pairwise comparison of the
treatment means is not likely to shed
much light on the dose-response
relationship. As Little (3) aptly noted.
“Perhaps it is fortunate that Galileo did
not have Duncan's test at his disposal, for
he might have failed to come up with the
beautifully simple equation, v = gt.”

Example 2. Factorial experiments.
Factorial treatment designs are common
and are widely recommended for
experiments designed to investigate
possible interactions of factors. The
treatment set for a two-factor [actorial
can be displayed in a two-way table (rows
and columns). highlighting the key point
that the treatments derive from a
“crossing™ of the levels of factor A with
those of factor B: a k-factor factorial can
be displayed similarly with a k-way table.

The cross-classificational nature of a
factorial treatment design should not be
ignored in the statistical analysis. Thus,
with a factorial it is almost always wrong
1o use a mean separation procedure on
the full set of treatments. That notwith-
standing. one often sees the sort of
analysis presented in Table 2. Only the
most astute reader will gain any
understanding of the main effects of the

Table 1. Example 1: Effect on wheat yield of
leaf rust treatment with different rates of
Rustkill'—a flawed analysis and presentation

Yield

‘Treatment and rate/ha (kg/ha}
Control {0 kg) 4,i34¢"
Rustkill 25W 0.25 kg 4,232 e
Rustkill 25W 0.5C kg 4.635d
Rustkill 25W 0.75 kg 4965 c
Rustkill 25W 1.00 kg 5,192 b
Rustkill 25W 1.25 kg 5311 e
Rustkill 25W 1.50 kg 5,505 a
Rustkill 25W 2.00 kg 5,551 a
LSD (P =0.05) 125

YNot real data.
*Means followed by the same letter are not
significantly different.
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nematicide and herbicide treatments and
of their interaction from this analysis
with Duncan’s test. Indeed, most rcaders
will fail even to recognize the factorial
nature of the treatment set.

For the same eight treatments, Table 3
makes the factorial treatment design
explicit and shows the appropriate
partitioning of the treatment sum of
squarcs (ic, that suggested by the
treatment design) into pieces reflecting
the effects of presence vs. absence of the
nematicide (rows), differential effects of
the herbicides including none (columns),
and the interaction of nematicide and
herbicide treatments. Over 995 of the
treatment sum of squares is attributable

Table 2. Example 2: Effcct on new growth of
peach trees of nematicide and herbicide
treatments for Pratylenchus penetrans and
weeds'—a flawed analysis and presentation

Treatment New growth
and rales/scre {em)
Control §59 cd’
Nemakill 15G (131 1h) 50k d
Goal 2E (] gal) 180.% a
Surflan 4AS (| gal) 109.6 be
Solicam B0OW (5 Ib) 137.1 ab
Nemakill 15G (133 1b)

= Goal 2E (1 gal) 190.1 a
Nemaball 15G (133 1b)

+ Surflan 4AS (1 gab 94.8 bed
Nemakill 15G (133 1b)

+ Solicam BOW {5 Ib) 137.9 ab

‘Not real data.

*Means followed by the same letier are not
signilicantly differentt P=0.05)according to
Duncan’s multiple range test

to herbicide differences: the main effect
for nematicide and interaction are not
significant,

Although it was inappropriate toapply
any mean separation procedure to the full
factorial set of eight treatments, it does
seem appropriate to compare the four
herbicide treatments using a mean
separation procedure as done on the
column means in the two-way table of
Table 3. It secems appropriate because 1
think the experimenter would want 1o
make all possible pairwise comparisons
of these four treatments (cf example 3).
The main effect (column) means are used
because there was no significant
interaction. If the interaction had been
significant, 1 would have compared the
four herbicide means within each level of
the other factor (ic, within each row of the
two-way table). In contrast to the
muddled message in Table 2, inferences
flow straightforwardly from Table 3:
Peach trec growth was unchanged with
use of Ncmakill; all three herbicides
increased vield significantly but the
increase with Goal was significantly
greater than with either Surflan or
Solicam; there was no significant
interaction of the herbicide and nematicide
trecatments. The power gained in
comparing herbicide treatments averaged
across ncmaticide treatments, exploiting
the factorial’s “hidden replication.™
separated Goal from Solicam, a difference
not evident in Table 2.

Example 3. Contrasts and preplanned
tests. Many treatment scts incorporate a
structure that strongly suggests the

Table 3, Example 2° Factonal structure and partiioming

T By S T v VT B

Herbicide

Nematicide None Caosl Surflan Solicam Mean
None 559 150.8 109.6 1371 1209
Nemakill 50.8 190.3 948 137.9 118.5
Mean 534a’ 185.6 ¢ 102.2b [37.5b
Source of variation df Sum of squares
Treatments 7 18.891.2

Nematicide 1.5

Herbicide 18.723.3

Intcraction 156.5

"Herbicide means followed by a commaon Ietter are not significantly different (LS = 39.4, P=0.05).

Table 4. Example 3: Treatments for corn scedlings infected with Diplodia spp. and implied

contrasts ol interest

Treatments

A = untreated control
B.C = mercuric fungicides

= nonmercuric fungicides, company |
E.F.G =

Implied contrasts

nonmercuric fungicides, company 11 (F.G are newer formulations of E)

. Control vs. trcated

. Mercuric vs. nonmercuric

Comparing mercurics

Company | vs. company 11

. Comparing products. company |

. Old vs. new formulations, company 11

. Comparing new formulations, company 11

OB L —

(A vs. rest)

(B.C vs. D.E.F.G.H)
(Bvs. C)

{D.H vs. E.F.G)

(D vs. H)

(E vs. F.G)

(Fvs. G)
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treatments were selected with particular
comparisons in mind. Often the treatments
fall into natural subgroups that “cry out™
for comparison. Table 4 shows one such
treatment set from Steel and Torrie (5,
pp. 205-208) and the comparisons or
contrasts that follow naturally from the
treatment design. Using the method of
orthogonal contrasts, the sum of squares
for treatments with seven degrees of
freedom can be partitioned into single-
degree-of-freedom sums of squares to test
the seven pertinent questions listed in
Table 4; Steel and Torrie (5) provide the
details. Note that some of these contrasts
are not pairwise; for example, the second
compares a group of two treatments vs. a
group of five. Some of the mean
separation procedures can also do
nonpairwise comparisons. but thev ar:
rarely used that way.

When relevant hypotheses follow from
the treatment design, as do the seven in
this example and as did the tests for main
cffects and interaction in example 2, the
overall Fiestis not prerequisite, relevant,
or recommendcd. Infact.a nonsignificant
overall F may wrongly dissuade the
experimenter from testing the preplanned
hypothescs of interest: when most of the

treatments differ little, the overall Fma: |
fail to dctect that some differcnces d -

exist,

It should be said that relevance is far
more important than orthogonality.
When the trcatment design suggests
nonorthogonal contrasts, so be it. The
mathematical niceties of orthogonality
arc far less important than extracting all
pertinent information from the data.

Whereas the misuses of mean scparation
procedures illustrated in examples | and
2 secem to me incontrovertible, there it
more room for judgment in deciding what
is preplanned and should thercfore be
tested with contrasts rather than a mean
scparation proccdure. [ applied the LSD
to the four herbicide treatment means in
Table 3, feeling that the structure in that
group of four treatments was minimal.
Someone clse might have argucd that
Goal and Solicam were more similar to
cach other (eg. in chemical structure and
mode of application) than to Surflan, so
onc should instead have calculated three
contrasts: control vs. herbicide, Surflan
vs. Goal and Solicam, and Goal vs.
Solicam. At the extreme, there are

statisticians who argue that everything

should be viewed as preplanned: thatif it
doesn't scem so, it's becausce the treatment
sct was poorly designed, Those statisticians
would cheerfully dispense with mean
separation procedures altogether,

It could be said that real life is more
complicated than examples 1, 2, and 3—
that treatment sets are usually morc
complex. That may well be true, but two
points come to mind. First, a morc
complex set of treatments may mean that
the analysis will be more complex but
doesn't void any of the arguments made
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here. If 14 treatments include a 3 X 4
factorial set plus two miscellancous
treatments, the factorial part should be
analyzed as a factorial. The presence of
odd treatments doesn't convey license to
ignore the rest of the structure in the
treatment set and proceed with Duncan's
test. And second, a hodgepodge treatment
:t often suggests that the experimental
ubjectives were not well thought out.

In judging whether a mean separation
procedure has been used improperly,
experimental design is irrelevant. It is
immaterial whether the experiment was
runasacompletely randomized design, a
randomized complete block design, or a
split plot design. What counts is the
nature of the treatments, that is, the
treatment design.

I'think mean separation procedures do
tavea place in data analysis, despite their
Irequent misuse. So, assuming it is
appropriate to use one, which procedure
should onc choose? There is room for
differing opinions. Very briefly, here are
some of my own feelings. First. I would
never use a multiple range test (Duncan's
or Newman-Keuls’). In using a multiple
range test, means are ranked and then
compared by one statistic if they are
adjacent in the ranked list, by another
statistic if they are separated by one
mean, by vet another if they are separated
by two means, etc. Why should my
perception of a difference between
treatments A and B depend on whether
the other treatments in the experiment
happened to give means that fell between
those for A and B? Furthermore, since

these procedures differ fundamentally in
the meaning they attach to the error rate,
I prefer procedures that define the error
rate in easy-to-describe ways (LSD and
Tukey's HSD). And, most importantly,
multiple range tests do not lend
themselves to easy construction of sets of
simultaneous confidence intervals,
Intervalestimation is far morc informative
than hypothesis testing, ought to be used
more often, and is easily done with LS D,
HSD, or the Waller-Duncan significant
difference,

Second, unless one has very few
treatments, the HSD and Schelfé's test
arctoo conservative for most applications.
They offer so much protection against
type | crrors (false positives: claiming
differences that are not real) that it is
difficulttofind anytreatmentdifferences,
and type Il errors (false negatives: failing
to detect real differences) become too
likely.

Third, 1 usually choose the LSD or the
Waller-Duncan test. Itis well known that
the LSD is prone to type I errors. but if
one requiresa significant F(evidence that
treatment differences do exist) before
applying the LSD. then the risk of tvpe |
crrors scems acceptable: this is often
called using the “protccted™ LSD. The
Waller-Duncan test is conceprually
appealing: the value of the statistic falls
somewhere between the LSD and HSD
according to thecalculated F. When the F
is small (litle evidence of treatment
differences). the Waller-Duncan statistic
isclose to the HSD, providinga high level
of protection against type I errors. When

the Fis large, it approaches the LSD.
making it easier to identify treaiment
differences that the F has indicated do
exist. However, the meaning of the error
rate for the Waller-Duncan test is not
easily described.. the statistic is more
complicated, and the test suffers from
limited availability of tables.

Which mean separation procedure one
elects 10 use—when it is appropriate to
use one—is far less important than
knowing when they are aif inappropriate.
The key to deciding when they are all
inappropriate lics in the treatment design.
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gaged one of the other two. This resulted in an immediate
change in the size of sprocket driving the planter boxes
and thereby changed the seeding rate.

The described electric clutch assembly was connected
by a roller-chain drive to the original manually adjusted
seeding control unit. The combination provides an almost
unlimited choice in seeding rates. The device shown in
Fig. 1 consists of 34-, 24-, and 12-tooth sprockets on the
shaft assemblies driven by the ciutches. Therefore, the
switching of the clutches changes the seeding rates in
roughly a 3 to 2 to 1 ratio. This reflects the desired cut
in seeding rate we wanted to achieve for cur water man-
agement study. To obtain other ratios, different size
sprockets could be selected. For example, if it was de-
sirable to reduce the seeding rate by only about 10 or
20%, sprockets could be selected to make this change.
With this equipment, the range in seeding rate can be
from 8,000 to 400,000 seed/ha. The device described al-
lows choosing one of three seeding rates from the tractor
seat, but it could be built for two, and possibly for even
more than three. However, it may not be practical to
have more than three clutches running in sequence.

The device is ideally suited for changing seeding rates.
The same concept, however, could be used to change fer-
tilizer or pesticide rates in instances where the materials
are applied by chain- or belt-driven assemblies. The con-
cept could also be used to allow the flexibility of fertilizing
only portions of a field, in the event there were isolated
areas where a specific plant nutrient was required.

The device can be readily constructed at moderate cost.
The cost of materials used for the device described here
was approximately $600.00.
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ANALYSIS OF COMBINED EXPERIMENTS!

M. S. McINTOSH?

Abstract

Most field experiments are conducted over two ar more locations or
years, yet statistical references do not contain sufficient detxil for complete
analysis. The purpose of this paper is io provide a reference for snaiysis
of combined experiments. Tables include sources of variation, degrees
of freedom, and F-ratios for one factor and split-plot experiments combined
over locations and/or years. The F-ratios are given for fixed, mixed, and
random models.

Additional index words: Experimental design, Series of experiments,
Statistics.

MOST field experiments are conducted over two or
more locations or years, yet there is no standard
reference which provides all of the details necessary for
combining analyses of experiments with more than one
factor. Two of the references (Steel and Torrie, 1980;

Snedecor and Cochran (1967) describe the procedure for
combined analysis of one factor experiments, but do not
describe the test of the average response to treatments
over years or locations. The test of the main effect of
locations or years may be of interest to researchers, but
is not readily available in the literature. Although, the
appropriate tests of years and locations are relatively
straight forward to derive, many agronomists might not
have the statistical skills to identify all sources of variation
and derive their expected mean squares. It is important
to completely define the statistical model even If a re-
searcher is not interested in testing the main effects of
years or Jocations. To correctly analyze an experiment all
terms must be accounted for because most computer soft-
ware packages automatically pool any unaccounted
sources of variation with the error term. The result of an
under-defined model could be an inflated error term.

Table 2. P-ratios used to test effects for rendomized complete
block experiments combined over locations.

Little and Hill, 1978) most commonly used by agronomists Socoss f “ F-tests
do not contdin analyses for combining analyses of annual ources o ean
i uares RL-RT RLFT FLFT
crops, Kempthorne (1952), Cochran and Cox {(1957), and varlation . T
Locations M, M, +MJVM,+M) MM, MM,
—————— Blocks/Locati M,

TSeientific Article No. A-3167 and Contribution No. 6236 of the  Treatment M, MM, MM,  MJM.
Univ. of Maryland Agric. Exp. Stn. Contribution from Dep. of Agronomy, Location x Treatment M, MJM, MJ/M, MJ/M.
Univ. of Maryland, College Park 20742, Received 17 May 1982. Pooled error M, ‘

2 Asgistant professor, Dep. of Agronomy, Univ. of Maryland, College
Park, MD 20742. +R = random. F = fixed, L. = location, T = treatment.

Tabie 1. Expected mean squares for randomized complete blocks experiments combined over locations.

' Expected mean squares

Mean

Sources of variation df squeres RL-RTt RL-FT FL-FT
Locations 1-1 M, o + roy + tofyp) + rte], ol + top, + rto] o + tohy, + A
Blocke/locations 1) M, o + tohy, o+ tapy o + tohyp
Treatment o t=1 M, u:-i-rdn‘«a-rlu!r a:+ru'n+rla.’r u:+rlB-’r
Lacation x treatment {1—-1Ht -1} M, o} + 1o} o + rogy o} + iy,
Pocled error _ Hr=14t~1) M, o ol v

4+ R = mandom. F = fixed, L. = location, T = treatment.
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Table 3. F ratios used to test effects in a randomized complete block experiment combined over years and locations,

F-tests
Mean -
Sources of variation af squares RY-RL-RT} RY-RL-FT RY-FL-RT FY-RL-FT RY-FR-FT
M
-1 M M, +MJiM, +M,) M/M M, + MM, +MJ  MJ/M, M/M,
Loentions i1 M, (MMM M) MJM, {M,+ MM, + M) MJM, MM,
Years x Locations fyr—141-1) M, M, + MM, + M) MJ/M, (M, + MM, +M) MJM, M,/M,
ocksY Locati =iyt M,
'?‘:utme:r:m X one ir‘- 1 i M, M, + MM, +M,) M, + MMM, +M,) MJM, MJﬁ! wﬁ-
Treatments x Years {t—1Hy—-1 M, MJM, MJM, MJ/M, ﬁJ!M: " IM'
Treatments x Locations it—1it=1} M, M./M, M./M, M./M, » M,
ts:x Years
“:atl.ocamenﬁ:’:s * ft=1{y—1iHl=~1) M, MM, MJ/M, MJ/M, MJM, M/M,
Pooled etror_ ir—~1Ht—1)yl M,

+R = random, F = fixed, Y = years, L = locations, T = treatmentas.

Expected mean squares must be known in order to
determine the F-ratios used to test the hypotheses of in-
terest. Rules for determining expected mean squares for
balanced data are described by Schultz (1955) and in
many statistical texts (Kempthorne, 1952; Steel and Tor-
rie, 1980; LeClerg et al.,, 1962; Snedecor and Cochran
1967; and Bennett and Franklin, 1954). The expectations
for the unbalanced case do not always equal those of the
balanced case (Hartley and Searle, 1969), depending on
the variance and covariance definitions in the model.
Hocking (1973) described three models with different
variance and covariance definitions for the unbalanced
case. The expectations used in the present paper to de-

Table 4, F-ratios used to test effects for split plot experimentis
erranged in a randomized complete block design and combined
over locations, A and B fixed.

F ratios
Sources of Mean ——————————
variation daf squares FL+1 RL
Locations I-1 M, MJ/M, M,/M,
Blocks/Locations ir-1 M,
A a-1 M, MJ/M, MJ/M,
A x Location e—1l1-1) M, MJM, MJM,
Pooled error a fa—1}r~1) M,
B b-1 M, M.J/M,, MJ/M,
B x Location th—1}-1) M, M./M,, M,/M,,
AxB (a—1h1-1) M, M/M, MJ/M,
A x B x Location (a—14b-1)1—-1) M, MJ/M,, M,/M,,

Poaled error b alir-1ji1-1} M,

tF = fixed, R = random, L. = location.

termine F-tests correspond to Hocking’s Model I and are
for the balanced case.

Computer programs will also generate expected mean
squares. The Statistical Analysis System (SAS) includes
the procedures VARCOMP and GLM with the RAN-
DOM option which give the coefficients for and estimate
variance components of mean squares. These procedures
will produce the same expected mean squares as Hocking's
Model III (Freund and Litteil, 1981). For mixed models,
the expectations generated by SAS differ from the bal-
anced case expectations.

The purpose of this paper is to present some complete
analysis of variance tables for combining balanced ex-
periments that can be used by researchers as a reference
to quickly and correctly identify sources of variation and
the appropriate F-ratios.

Results and Discussion

The expected mean squares and sources of variation
for randomized complete block experiments combined over
locations are given in Table 1, Table 1 can also be used
for experiments combined over years by replacing years
with locations. The appropriate F-tests differ depending
on whether the locations and treatments are fixed or ran-
dom cffects (Table 2). In the case where both locations
and treatrnents are random, there is no exact test for
location effects. Therefore, an approximation is proposed

Table 5. F-ratios used to test effects of split plot experiments arranged in a randomized complete block design combined over location,

A end B fixed.
F-tests
! Mean

Sources of variation df squares RY-RLt RY-FL FY-FL
Years -1 M, MJ/M, M./M, M,/M,
Locations ly— 1 M, MM, MM, M,/M,
Years x Locations y-0il-1} M, MJ/M, MJM, M,/M,
Blocks/Locations x Years ylir-1) M,

A a—1 M, (M, +MJAM, + M) MJ/M, MJ/M,
A X Years fa—1iy-1} M, MJM, M,J/M, My/M,
A x Locations ta— 1Ml ~1) M, M,/M, M./M, M,/M,
A x Years x Locations ta—Lily—1Ml—-1) M, MJ/M, MJ/M, MJ/M,
Pooled error a yla-1jr-1) M,

B R ’ ‘b— 1' Mll ‘MII+MII’HMII +Mu) MIJMIR MIJMu
B x Years tb—1ly-1) M, M,/M,, M./M,, M,/M,,
B x Locations tb—1K1-1) M,, M,/M,, M,,/M,, M,/M,,
B x Years x Locations {b—1Hy —1HI-1) M,, M,/M,, M, /M,, My/M,
AxB ta—~14b—1} M, M+ MM, M) M,JM,, M,/M,,
A 2B x Years fa—14b~1{y -1 M,, M,/M,, M,J/M,, M, /M,,
A x B x Locations . ‘ﬂ—”lb‘”ﬂ— 1) Mn Muan MgJM" MlIIMII
A x B x Years x Locations ta—1{b—1Hy =111~ 1} M,, M,/M,, M,/M,, M,,iM,,
Pooled error b - ylalb— 1Kr - 1) M.,

TR = random, F = fixed, Y = years, L = jocation
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(Satterthwaite, 1946) using N’ and N, degrees of free-
dom (df), where:

Ny = (M, + M)¥/[M,7/(1—1) + M2/ (r=1)(t—1)]

Ny = (M, + M)2/[M2/1(r— 1) + M&/(1—D(—1)]

Before calculating the approximate df, time, and effort
could be saved by testing the significance of locations
using the df for locations for the numerator and the df
for blocks/locations or locations X treatment (whichever
is smaller) for the denominator. This is a conservative
test and if the F is significant, it is not necessary to cal-
culate N’ and Ny". If the F is not significant, using N,
and Ny’ will lower the critical F- value, possibly causing
the F 1o become significant.

Table 3 gives the approximate F-tests to be used for
combining randomized complete block experiments over
locations and yeass. The F-ratios have been given for
fixed, mixed, and random models. The F-ratios given for
random years and fixed locations, can also be used for
fixed years and random locations if years and location
are switched under sources of variation. As in the previous
example, approximate F-tests are appropriate for some
of the comparisons.

Table 4 gives the analysis of variance to be used for
combining split plot experiments over locations and years.

The table includes the F-tests to be used for fixed or
random locations and fixed treatment effects. Tabie 5 is
an extension of Table 4 which also includes years as fixed
or random effects.
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Baby Bear’s Dilemma: A Statistical Tale'

S. G. Carmer and W, M. Walker®

ABSTRACT

An alfegorical and satirical, but also, we hope an mccorate and
humorous expository look at the problem researchers face in choosing
a pairwise multiple comparisons procedure for detecting differences
among treatment mezns. The primary objective is to present, from
several points of view, some of the arguments and resulting confusion
surrounding the use of the least significant difference vis-a-vis Tukey's
w procedure or honest significant difference, Duncan’s Multiple Range
Test, and the Waller-Duncan Bayesian k-ratio f test. Particolar em-
phasis is placed on demonstrating that the concept of comparisonwise
error rate is considerably more logical, sound, and useful in pairwise
mulliple comparisons than the concept of experimentwise error rate.
As 2 consequence, despite what researchers may have read in the
stafistical literature or what they may have heard from statistical
experts, the least significant difference is appropriate whenever a
pairwise multiple comparisons provedure is in order.

Additional index words: Dunczn’s multiple rnage test, Least sig-
nificant difference, Mulliple comparisons, Statistics! analysis, Tukey's
w procedure, Waller-Duncan Bayesion k-ratio 7 test.

PROLOGUE

aBy Bear enjoyed porridge. He had a remarkably

discriminating taste for porridge and was thus
very adept at recognizing outstanding porridge. Baby
Bear enjoyed porridge so much that he had become
a plant breeder in order to breed and develop cullivars
with unique and excellent porridge-producing prop-
erties.

THE EXPERIMENT

When Baby Bear was still a young plant breeder,
he had had little experience in designing experiments.
One year he decided to compare the porridge yields
of 15 cultivars; he wanted to compare the yield of

each cultivar to the yield of each of the other 14.

cultivars. That is, he wanted to make the {05 pairwise
comparisons among the cultivars. Since he was naive
and inexperienced in the subject of experimental de-
sign, Baby Bear conducted 105 trials al the Academic
Research Farm (ARF). Each trial consisted of four
replications of one of the pairs of cultivars in a ran-
domized complete block arrangement of the eight
plots. Thus the error term for a single trial had three
degrees of freedom (df).

The data from each trial were subjected to analysis

of variance, and the least significant difference (L.S.D.) -

for comparing the two cultivar means was calculated.
Baby Bear used the 0.05 level of significnace; he knew
this meant he should expect to falsely declare the two
cullivar means different in 5% of the comparisons for
which the pair of cultivars were genetically alike.
Since 105(0.05) = 5.25, Baby Bear figured he would
make about five Type | errors out of the 105 com-
parisons if al} 15 cultivars were genetically alike. How-
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ever, Baby Bear considered it to be rather unlikely
that all 15 cultivars were genetically alike, so he did
not worry a great deal about possible Type I ervors.
But Baby Bear did want to be able to detect differ-
ences in porridge yield if there were any.

Now it had come (o pass that, while Baby Bear was
harvesting his 840 (four replicates X two cultivars
x 105 trals = 840) plots, the Academic Research
Farm Superintendent (ARFS) had stopped by and told
Baby Bear that such an excessive number of plots,
just to compare 15 cultivars, would not be allowed
the next year. This announcement so distressed and
disturbed Baby Bear that he made an appointment to
discuss his problem with Goldilocks. Goldilocks was
a Statistical Lady of Greatl Beauty and Charm, or, as
W. L. Smith, professor of statistics, Univ. of North
Carolina might put it, a SLOGBAC, She had traveled
cxiensively through many areas of the Wonderful
World of S1atistical Theory, but had never established
a permanent residence there. Like R. A. Fisher, she
knew that an understanding of statistical theory by
itsclf did not enable one to handle statistical problems
in the real world (Box, 1978, p. 270-271).

THE FIRST VISIT

After listening to Baby Bear describe his problem,
Goldilocks had some advice to offer. Goldilocks sug-
gested that Baby Bear conduct four replications of a
randomized complete block design with the 15 culti-
vars as treatments. The experiment would occupy
only 60 plots (and thus make the Academic Research
Farm Superintendent happy), and would have 42 df
for experimental error (and thus make statisticians
happy). Baby Bear was no dumb bunny, and the ad-
vantages of this approach were immediately obvious
to him. He warmly thanked Goldilocks for pointing
out this method of conserving experimental resources
while still meeting the objeclive of comparing the
members of the 105 pairs of 15 cultivars, Goldilocks
appreciated Baby Bear’s expression of thanks and
remarked that, because the L.8.D. has a compari-
sonwise Type I error rate and becawvse there are 105
pairwise comparisons among the 15 cultivars, Baby
Bear should expect to make 105(0.05) = 5.25, or about
five, Type 1 errors if all 15 cultivars were exactly alike.
Goldilocks pointed out that Baby Bear should not be
at all surprised if he made at least one Type I error
in such a situation, but to help insure against the
possibility of 15 genetically alike cultivars Baby Bear
might compute the L.S.D. only if the analysis of var-
iance Fotest for treatment (coltivar) effects was sip-
nificant at the 4,05 level. As Baby Bear prepared to
leave Goldilocks mentioned that the L.S.D. is a more
powerful procedure for detecting differences among
treatments than other commonly employed multiple
comparison procedures. While strolting back to his
office Baby Bear mulled over Goldlilocks’ comments,
decided that Goldilocks' advice was quite reasonable,
and decided to foliow it for his next experiment.

.-~
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THE REVIEWERS

1t too came to pass, eventually, that Baby Bear
wrole a paper concerning his randomized complete
block design with the 15 cultivars. After considerable
amounts of rewriting, revising, cditing, and polishing,
Baby Bear submitted his manuscript o & well-known,
Respected, Prestigious (WKRP) scientific journal. Baby
Bear’s manuscript-was reviewed by two peer scientists.

Reviewer number one was Papa Bear. Papa Bear
was old enough fo be Baby Bear’s father and thus
was a more mature and more experienced  plant
breeder. Papa Bear considered himself to be rather
knowledgeable in the area of statistics; after all, he
fad taken a course on the design and analysis of ex-
periments back in the early 1960s when he, himself,
had been a graduate student. Papa Bear stated quite
emphatically that the paper by Baby Bear was defi-
nitely in need of major revision because, according
10 Steel and Torrie (1960, p. 107), use of the L.8.D.
was inappropriate for all possibie paired comparisons.
Papa Bear added that the L.S.D. was improper be-
cause the experimentwise Type 1 error rate for 15
treatments would be about 78% |based on probabilities
of the studentized range tabulated by Harter et al.
(1959)]. That is, the probability of finding at least one
significant difference, even if there were no real dif-
ferences among the 15 cultivars, was about 0.78. Papa
Bear suggested in rather strong terms that Baby Bear
might have used Tukey's w procedure, which is some-
times referred to as the honest significant difference
(HSD) and has an experimentwisc error rat¢ of only
5%. Furthcrmore, Papa Bear added that, according
1o Steel and Torrie (1980, Chapter 8), this experi-
mentwise error rate would apply to the family of all
105 pairwise comparisons. Papa Bear’s real prefer-
ence, however, was for use of Duncan’s Multiple
Range Test {DMRT) which is also described by Steel
and Torrie (1980, Chapter 8). For the family of 105
pairwise comparisons the DMRT has an cxperiment-
wise crror rale intermediate between that for the
1..S.1. and the HSD. Papa Bear said that he preferred
© use DMRT because it was common procedure to
use it in articles published in this Well-known, Re-
spected, Prestigious (WKRP) scientific journal.

Another plant breeder of some renown, Mama Bear,
was reviewer number 2. She also objected to Baby
Bear's use of the L.S.D. Mama Bear said that Baby
Bear should have used the more modern and up-to-
date Waller and Duncan (1969) Bayesian k-ratio 7 test
(referred to as the Bayes L.S5.D. by some bears). As
Mama Bear pointed out, a significance levet is not
selected when the Waller-Duncan test is used; instead
the relative seriousness of Type 1 and Type 11 errors
is considered and the analysis of variance F value has
a direct bearing on the magnitude of the critical value.
As Mama Bear put it, “The bigger the F value, the
smaller the Bayes L.S.D. critical value.™”

THE SECOND VISIT

Baby Bear took Papa Bear's and Mama Bear's com-
ments o Goldilotks. Goldilocks immediately made
the sape observation that there is considerable dis-

agreement and confusion among statisticians, as well
as researchers, on the subject of pairwise multiple
comparisons, Golditocks then said that, if the indi-
vidual comparisons within pairs of cultivars were the
conceptual units of interest 1o Baby Bear, then Baby
Bear's use of the restricted or protected L.S.D. was
indecd appropriate, and, in Goldilocks® opinion, was
the procedure o choose. Goldilocks suggested that
Baby Bear might read the two papers by Carmer and
Swanson (1971, 1973). In addition, Goldilocks re-
marked that, if the entire experiment or, more spe-
cifically, the family of 105 pairwise comparisons was
not the conceptual unit of interest, but was used in-
stead as an efficient too! of statistical design (to reduce
the number of plots from 840 to 60, while also pro-
viding an estimate of experimental error with a rea-
sonable number of degrees of freedom), then the con-
cept of experimentwise or familywise error rate was
of importance only in the Wonderful World of Statjs-
tical Theory and should not be applied to real world
problems where the individual comparisons are the
units of concern and importance. Goldilocks said that
it made little or no sense to penalize a researcher for
using an efficient experimental design; the penalty of
experimentwise error rate should not be infiicted upon
Baby Bear just because he used a randomized com-
plete block design with 60 plots (15 cultivars x four
replications) rather than 105 trials occupying 840 plots.
_Goldilocks then told Baby Bear about a computer
simulation conducted by Carmer (1980, personal com-
munication). There were 5,000 repetitions of a ran-
domized complete block experiment with four repli-
cations of 15 treatments with identical true means.
The 5% level L.S.D. was computed for each repeti-
tion; the comparisonwise Type | error rate was 0.0497
+ (.0007 and the experimentwise Type 1 error rate
wus 0.7804 = 0.0055. Also simulated were 285 rep-
etitions of 105 small trials each with four replications
of two treatments with identical true means. Here the
yse of the 5% level L.S.D. produced a comparisonwise
error rate of 0.0515 = 0.0013 which, of course,
cqualled the experimentwise crror rale because cach
trial contained only two treatments. However, if a set
of 105 trials is considered to be “*an experiment™, it
may be noted that one or more Type [ eirors were
made in 283 out of the 285 repetitions; thus the *‘ex-
perimentwise’” error rate was 283/285 = 0.9930. This
value compares favorably with the expected value,
09954 = [1 -~ (0.95)'*], for 105 independent
comparisons.

Baby Bear said that it sure seemed to him that
theoretical statisiicians were looking for honey up the
wrong tree when they invented experimentwise error
rates.

Goldilocks then said that if Baby Bear wanted to
reduce the probability of Type 1 errors he should con-
sider changing his significance level from a = 0.05
1o either a = 0.025 or & = 0.01; but, since Baby Bear
did not breed porridge in the Wonderful World of
Statistical Theory, il was quite unrealistic to entertain
thoughts of Tukey's w procedure. It was Goldilocks’
opinion that DMRT should be used only by those
rescarchers stranded somewhere between reality and
the Wonderful World of Statistical Theory. Further-
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more, from a practical point of view, DMRT has sev-
eral drawbacks. It requires multi-valued critical val-
ues, so thai the difference between cultivars required
for significance depends on the number of cultivars
in the experiment; it is fess powerful, that is less able
to detect differences than the L.S.D. Goidilocks said
that, while DMRT might make some sense in the
Wonderful World of Statistical Theory, it did not make
much sense in the real world to think that the true
difference between any two cultivars depended in any
way on what other cultivars were included in the
experiment.

Mama Bear's comments concerning the Waller-
Duncan Bayesian k-ratio r test caused Goldilocks to
pause in a thoughtful manner. Finally, Goldilocks said
that Duncan and his student, Waller, had done a great
deal to clarify the multiple comparisons problem and
that their approach, which uses the relative serious-
ness of Type T and Type 11 errors, has considerable
mesit. Goldilocks added that Carmer (1976) used the
idea of relative sericusness in choosing the optimal
significance level for the L.S.D. and that even Duncan
(1970) had stated that the Waller-Duncan procedure
bas a more sound logical foundation than DMRT.
Goldilocks told Baby Bear that the Waller-Duncun
procedurc is not as simple as the restricled L.S.D.;
Il requires more extensive tables which are not yet
as readily available 10 researchers as ordinary Student
1 1ables. Goldilocks also pointed out that the Waller-
Duncan procedure has a greater dependence than the
restricted L.5.D. on the calculated F value, and con-
sequently an overestimate of F could lead to an ex-
cessive number of Type I errors. On the other hand,
as Goldilocks observed, an underestimate of F could
lead to an excess of Type Il errors and a reduction
in power,

All in all it was Goldilocks’ opinion that due to its
simplicity and its basis on the conceptual unit of in-
terest, the individual comparison, the restricted L.S.D.
is the pairwise multiple comparison procedure of
choice.

EPILOGUE

Papa Bear gruffly sputtered that his generation had
been brought up on DMRT, had used it in many, many
scientific papers and articles, that therefore its use
must be correct, and that it was utterly unthinkable
{o discontinue its use.

Mama Bear answered, with only mild irritation, that
her generation had abused and misused DMRT. For
example, it had been applied to experiments where
the treaiments were quantitative levels of a factor such
as fertilizer rates. sceding rates, row-spacings, or
dates of planting. Mama Bear suggested that rescarch-
ers might find papers by Carmer (1978). Chew (1976,
1977}, Liule (1978), and Petersen §{1977) of interest

and help. Mama Bear reiterated her position that the
future lies with the Waller-Duncan Bayesian &-ratio
¢ test, and that the sooner researchers switched to i,
the betler. She quoted Max Planck (1968, p. 33-34)
who said, ‘A new scientific truth does not triumph
by convincing its opponents and making them see the
light, but rather because its opponents eventually die,
and a new generation grows up that is familiar with
it.”

With a smile Goldilocks said that she fervently
hoped the day would come when no one used DMRT
for anything, and that everyone would KISS and make
up. Softly she added that KISS is an acronym for
Keep It Simple, Statisticians.

And finally, Baby Bear recalled the philosophy of
Carmer et al. (1979) on the role of statisticians in
research. He decided however, that, since it was Gol-
dilocks® job to provide service with a smile, it really
wasn't necessary 1o acknowledge her contributions
10 his research. The main thing, he thought 1o himself,
was 1o keep on eating porridge.
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252 13: Random Effects Model

513, 10—Tests. of homogeneity of variance. From time to time we have
gquestioned whether two or more mean squares differ significantly. With two
mean squares, a two-tailed F test is made as follows. Place the larger of 52, s% in
the numerator of F and read table A 14, part I1, at the 2.5% level to obtain a 5%
test. With a onc-tailed test having H .0} = o2, place st in the numerator and
read F at the usual 5% level; of course if s = 5% in this case, we accept H,.

With @ > 2 independent estimates of variance 52, Bartlett (9) has provided
a test. If the 57 all have the same number of degrees of freedom », the test
criterion, using logarithms to base e, is

M=vain¥ — Zins)) (5% = Zst/a) (13.10.1)

On the null hypothesis that cach s} is an estimate of the same ¢2, the quantity
M/C is distributed approximately as x* with (@ — 1) df, where C = 1 +
(@ + 1)/(3av).

Intable 13.10.1 this test is applied to the variances of grams of fat absorbed

" with four types of fat in the doughnut example of table 12.2.1. Here a = 4, » = 5.

The value of A is 1.88, clearly not significant with 3 df. To illustrate the method,
however, x* = M/C = 1.74 has alsc been computed.

When the degrees of freedom v, differ, as with samples of unequal sizes,

M =(Zr)Ins* — Zy;lns? (32 = ZwsifZw)
C=1+1{1/{3(a - DIl /vy, — 1/30)
X1~ M/C  (a- 1)df

In table 13.10.2 this test is applied to the variances of the birth weights of
five litters of pigs. Since 5% is the pooled variance (weighting by degrees of
freedom), we have included a column of sums of squares as well as a column of
cecipracals for finding C. The computations give x* = 16.99 with 4 df, showing
that intralitter variances differ in these data.

The x* approximation is less satisfactory il most of the df v; are less than 5,
Special tables for this are given in the Biometrika Tables (10). This reference
also gives the significance levels of s2,,/s2,, the ratio of the largest to the
smallest of the @ variances. This ratio provides a quick test of homogeneity of
variances that will often settle the issue, though usually less sensitive than
Bartlett’s test.

Unfortunately, Bartlett’s test and the preceding test give too many signifi-

TABLE 13.10.1
BARTLETT'S TEST WHEN ALL ESTIMATES HAVE » ~ 5 DF

2

Fat 55 In s;

1 178 5.182 M = (5)[4{4.614) — (8.081]

2 60 4.094 =~ F.88 (df = 3}

3 98 4.585 C =1+ {a+ 1)/(3ar)

4 68 4.220 =1 + 5/{(3)(4)(5)] = 1.083
Total 404 18.081

= 1009 In5% = 4.614 x* = 1.88/1.083 = |.74 P=0.5
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TABLE 13.10.2
BARTLETT'S TEST FOR HOMOGENEITY OF VARIANCE WHEN 57 HAVE DIFFERING DF
Sum of Squares daf Mean Squares Reciprocals

Litter A v st In s} I

1 8.18 9 0.909 —0.095 01111

2 3.48 7 A7 —0.6%99 .1429

3 .68 9 076 -2.5717 NANN

4 0.72 7 103 ~2.273 1429

5 0.73 5 0.146 —1.924 0.2000
a=3 13.79 37 07080

52 = Zpst/Ze, = 13.79/37 = 0.3727

(Z0) InF* = (37)(—0.9870) = -36.519

M= () In3* — ZwInsf = —36.519 — (—54.472) = 17.96
C =1+ [17(3)(#)] {0.7080 — 0.0270) — 1.057

X' =M[C=1796/1.057 = 1699  (df - 4) P <0.01

cant results with observations that come from long-tailed distributions—
distributions with positive kurtosis, An approximate test that is much less
sensitive to nonnormality in the data has been given by Levene (1 1).

13.11—Levene’s test of homogeneity of variance. As a measure of the
variation within a class, Levene’s test uses the average of the absolute deviations

S|X; — X.l/n instead of the mean square of the deviations s? —

Z(X; — X, )%/(n — 1). This avoidance of squaring makes the test criterion
much less sensitive to long-tailed distributions. As an example, four independent
samples with n — 7 were drawn from the ¢ distribution with 3 df—a symmetrical
long-tailed distribution—with the number 7 added to alt observations to avoi
negative observations. In this example, of course, we know that Hyo? = o2 is
correct. )

Table 13.11.1 shows the original data on the left and the absolute deviations
|X; — X, | en the right. An observation in the data that catches the eye is the

TABLE 13.111
EXAMPLE OF LEVENE'S TEST OF HOMOGENEITY OF VARIANCE

Absolute Deviations

Data for Class from Class Mean
t 2 3 4 1 2 3 4
7.40 5.84 3.09 7.55 0.54 2.08 1.89 0.71
6.18 6.69 7.96 5.65 0.68 0.07 1.76 1.E9
6.86 YRV 5.31 6.92 0.00 0.36 0.89 0.08
1.76 7.42 7.39 6.50 0.90 0.66 119 . 0.34
6.39 G.83 0.51 5.46 0.47 0.07 5.69 1.38
5.95 5.06 7.34 7.40 0.91 170 1.64 0.56
7.48 5.35 6.28 8.37 0.62 140 0.08 1.53
Toted 48.02 47.31 43.38 47.85 4.12 6.34 J13.14 579
Mean “6.86 6.76 . 6.20 6.84 0.589  0.906 1.877 0827
z

5 0.500 1.639 71.325 1.100 0.095  0.668 3214 0302
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i i
i TABLE 13.11.2
~ ANALYSIS OF VARIANCE OF MEAN DEVIATIONS
Source: o dr Sum of Squares Mean Squares F
.- Between classes . 3 6.773 2,258 211
25.674 1.070

Within classes 24
value 0.51, which looks like 'a gross.error, in class 3. Actually, 0.51 is not
* particularly unusual as the most extreme value for this long-tailed distribution.

“. Bartlett’s test gives x* = 11.22, P = 0.01,.erroncously rejecting the null
_hypothesis (example 13.11.1). For Levene’s test we perform an analysis of
variance of the mean deviations in the right half of table 13.11.1. The class
:-means, 0.589,-0.906, etc., are our estimates of the variability within the classes.
Table 13.11.2 gives the analysis.

i "The F value, 2.11, indicates P > 0.10 with 3 and 24 df—not significant. The
“test is approximate because the absolute deviations are not normal, and the

" within-class s} suggest a much higher variance within class 3 than within other
classes. In fact, Satterthwaite’s rule, section 12.10, suggests that the within-class
mean square should have 10 df, not 24, B :

- EXAMPLE 13.11.1—Apply Bartlett’s test to the within-class s} from the original data on the
._nz,.m_m_m. of EEo. 13.15.1. Ans. M = 11,995, C = 1.069, x* = 11.22 (3 df), P about 0.01.

i

: EXAMPLE 13.11.2—1In the daia on state expenditures per pupil in 1977, the within-class
" mean squares s} and the degrees of freedom in five regions of the United States were as follows;
Northeast, s7 = 0.1240, v, = 9; Southeast, 0.0335, 6; South Central, 0.0057, 8; North Central,
0.0448, 10; Mountain Pacific, 0.0404, 10. Apply Bartleit’s test. Ans, x* = 15.35, df = 4, P = 0.01.

TECHNICAL TERMS

model IT

nested classification
noncentral F distribution
random effects
three-stage sampling

components of variance
- hierarchal classification
homogeneity of variance
intraclass correlation
“mixed effects

REFERENCES

1. Tang, P. C, Star. Res. Mem. 2 (1938):126.
. Pearson, E. 8., and Hartley, H. Q. Biometrika 38 (1951):112.
3. South. Coop. Ser. Bull. 10, 1951. : :
4. King, A. J., and McCarty, D. E. J. Mark. 6 (1941):462.
5.:Newman, H. H.; Freeman, F. N.; and Holzinger, K. J. 1937. Twins. Univ. of Chicago Press.
+ 6. Winsor, C, P.,and Clarke, G. L. J. Mar. Res. 3 (1940):1. :
....\,womau.g....m..u..wmaa_w«:.auoquAv"Nm_.
m.,
o.
c...

[5d

Wald, A. Ann. Math. Stat. 11 (1940):96. -

-Bartlett, M. S. J. R. Stat. Soc. 4 (1937):137,

-Pearson, E. S., and Hartley, H. O. 1954. Biometrika Tables for Statisticians, vol. 1. Cambridge
" Univ. Press, Tables 31 and 32. - C

11, Levene, H. 1960. In Contributions to Probability and Statistics. Stanford Univ, Press,

.l HE Stanford; Calif, p. 278, ) , T

iyl

it

- ©7 14.1—Intreduction. When planning a controlled experiment, the experi-
" _menter oftem acquires the ability to predict roughly the behavior of the
experimental materiafl. In identical environments young male rats are known to
gain weight faster than young female rats. In a machine that subjects five
different pieces of cloth to simulated wearing, experience shows that the cloths
placed in positions 4 and 5 will receive less abrasion than those in the other
positions. Such knowledge can be used to increase the accuracy of an experi-
ment, If g treatments are to be compared, experimental units are first arranged
in groups of 4. Units assigned to the same group should be as similar in
responsivencess as possible. Each treatment is then allocated by randomization to
-:’one unit in each group. This produces a two-way classification, since any
_.observation is classified by the treatment it receives and the group to which it
- belongs. _ :
i The name given to the group varies with the type of application. In
- . agricultural field experiments, long experience has shown that plots near one
another tend to give similar yields. The group will therefore often be a compact
piece of land, called a block. The experimental plan is described as randomized
blocks. Another name used for the group is replication—meaning a single trial
or repetition of the comparison between the treatments. Many experiments on
... human subjects show considerable variation from one subject to another.
-+ Sometimes it is possible to give cach treatment to every subject on different

occasions—as when comparing different analgesics for the relief of chronic

. ‘headaches or different rewards for performance in a repetitive task. The

' objective is to make the comparisens among treatments more accurate, since
- they are made within subjects. The groups would then probably . be: called
““subjects.” In the abrasion tests just mentioned, the groups would  be. posi-
“tions,” all the pieces of cloth (treatments) being tested ineach position. The
name used ofien describes the classification employed in the groiping.
: Two-way classifications are frequent in surveys and observational studies,
also. We encounter an example in section 11.10 in which farms are classified by
:s0il type and owner-tenant status. In a survey of family expenditures on food,
classification of the results by size of family and income level is-'obviously
relevant. : T : Do
© .We first present an example to familiarize you with the standard computa-
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Checklist for Troubleshooting Non-estimatable Contrasts

1. Does the number of coefficients agree with the number of
levels being tested for the main effect? (e.g., contrast

‘Y va' X* trt D 0 0100 0 =1 must have eight treatment levels
being accessed within your data set. .

2. Do the coefficlents agree with the uay the dats is read by
the computer? A. character strings follow alphabetic sequence.
B. numeral trt assignments follow in numerical
order. (exception. ex., rates of 0 2.5 5
"and 8 will be read by the computer in the
order 0 5 8 2.5 ) .

3. Does the variable before the coefficients agree with the
Hay the coefficlents were obtained? (e.g., Hith interactions
such as placement*rate, were the placement coefficlientsa multiplied

by the rate coefficients?)

4. Does the varlable in the contrast match the variable in the
model atatement? (e.g., With an interaction contrast such as
plcmt¥*rate*residuve, the same interaction should be in the model,
not rnte*p}cmt*residue.) .

5. Is there miseing data? (i.e., Do socme treatments have 2
different number of observations per cell?) Compare the same
contraste for different variables and mee if some are estimatable
_for some variablez while not for others.

€. 1f rates sre present, but the methods and or sources are not
incloded for the * 0 ” rates, then the 0 rate plots must be
deleted to check RATE LIN or RATE QUAD among the other rates.
(i.e., the 0 rates were not found for each method and or source
variable.) THE 0 RATES CAN BE INCLUDED IF THE CONTRAST 1S5 DONE

USING THE " TRT ™ VARIABLE. : -

7. In a interaction contrast, each level of the heirarchy must
add up to zero whether the centrast’ is orthogonal or not. (e.g.
contrast tillage*rate must have. at least two levels of tillage
used in the contrast eo coefficlents add to zero for that level
of the heirarchy and at least two levels of rate for the same

reasch.

8. In an interaction contrast, the -order of the wvariasbles being
crossed must mateh the order of the variables in the classes
atatement. (e.g., Classes rate residue plcmti the three way
interaction contrast can only be rate¥residue¥*plcemt, not rate#
plcmt?residue.) ‘

Orthogonal Contrasts: essentially have no overlapping nf-Sé.
. (will add up to the main effect error)

-

Non Orthogonal Contrasts: overlapping of SS. -

[, .



Table F Coefficicnts of Orthogonal Polvnomials

“ : X

W
L=
i
N
-~

k Polynomial 1 2

g 9 10 zc}.@

3 Linear -1 0 1 2 1
/‘ Quadratie. 1 -2 1 6 3
Linear -3 -1 1 3 20 2

% 4 Quadratic 1 -1 ~-1" 1 4 1
Cubic =1 "3 -3 1 20 AL
Linear -2 =1 0 2 10 1

5 Quadratic 2 -1 -2 -1 2 14 1
Cubic -1 2. 0 -2 1 10 %
Quartic 1 -4 6 -4 1 70 4

.~. Linear -5 -3 -1 1 3 5 70 2
(6J)Quadratic = 5 ~§ -4 —4 -1 5 84 3
Cubic ~3 7 4 -4 7 5 ; 180 3§
Quartic 1 -3 2 2 -3 1 28

- Linear 23 -2 -1 0 1 2 3 . 28 1

7 Quadratic, 5 0 -3 -4 -3 0 5. 84 1
Cubic -1 1 1 0 -1 -1 ! 6 1
Quartic 3 -7 1 6 1 -7 3 154 . %
Linear -7 -5 =3 -1 1 3 5 7 168 2
Quadratic 7 1 =3 -5 -5 -3 i 7 168 %

8 Cubic = -7 5 7 3 -3 =7 -5 7 264 3
- Quartic 7 -13 -3 9 9 -3 -13 7 016 I~
Quintic -7 23 -17 ~15 15 17 =23 7 2184 5
Linear ~4 -3 -2 -1 0 i 2 3 4 VA
Quadratic 28 * 7 ~8§ —17 —20 —17 -8 7 28 2772 03

g8 Cubic -~ 14 7013 : 0 -9 -13 -7 14 a0
Quartic =21 —~11 g 1% g 11 -21 14 2002 %
Quintic -4 11 -4 -9 0 9 4 11 4 468 S
Linear -9 -7 ~5 -3 -1 1 3 5 T 9 230 2
Quadratic 6. 2 —~1 =3 —~4 —4 -3 1 2 6 132 %

10 Cubic ~42 14 35 31 12 =12 —-31 —35 —14 42 8580 5
Quartic 18 —22 =17 3 18 18 3 17 <22 18 2860 ¥
Quintic =6 14 -1 -1l =6 6 11 1-14 6 780 %




Experiment: Influence of Nitrogen Rate and Mowing Height on Sensor
Based Detection of Nutrient Stress

Treatment N rate Mowing Height
lb N/1000 ft%/month  inches
1 0 0.5
2 0.5 0.5
3 1.0 0.5
4 1.5 0.5
5 0 1.5
6 0.5 1.5
7 1.0 1.5
8 1.5 1.5 -
Replications: 4
Experimental design: CRD
CRD CRD RCBD
Source of variation df Source of variation df Source of variation  df
Total (4*8)-1 31 Total (4%8)-1 31 Total (4*8)-1 31
block 3
height 1 treatment 7 treatment 7
nrate 3
nrate*height 3
error 24 error 24 error 21
proc gim;

classes height nrate;

model yield = nrate height nrate*height;
contrast 'Nrate_lin' nrate -3-113;
contrast 'Nrate_quad' nrate 1 -1-1 1;
contrast ‘Nrate_cub'nrate  -13-31;

contrast ‘height*nrate_lin' height*nrate -3-1 1331 -1-3;
contrast 'height*nrate_quad' height*nrate 1 -1 -1 1-11 1 -1;

- means nrate height nrate*height;
run;



height

0.5 1.5
nrate
0 0.5 1.0 1.5 0 0.5 1.0 1.5
height :
0.5 1.5
1 -1
nrate (linear)

0 0.5 1.0 1.5 0 0.5 1.0 1.5
-3 -1 1 3 -3 -1 1 3
interaction coefficients (height*nrate_lin)
-3 -1 1 3 3 1 -1 -3
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Table A.3 Values o@

TABLES 577

‘ Probability of 2 numerically larger value qf ¢
df- ) i LDV~ pme 1 al : _
05 | 0.4 | 0.3 02,01 | o005 ’ 0.2 ‘ 0.01 | 0.001
— _ [ D . ! o Lay J . I
i r i
b1 1.000 | 1.376 1 1.963 | 3.078 | 6.314 |12.706 131.821 |63.657 |636.419
2 | 816 | 1.060 | 1.386 | 1.886 | 2.020 | 4.303 | 6.965 | 9.925 | 31.508
31 7651 078 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 12,941
4] 7ar ] o4 | 1190 | 1,533 | 2.132 | 2.776 | 3.747 | 4.604 | 8.610
51 727 | 020 | 1,156 | 1.476 | 2.015 | 2.571 | 3.365 | 1.032 | 6.859
v6 | 718 | 006 | L.134 | 1.440 | 1,943 + 2,447 | 3.143 | 3.707 | 5.959
70 71| Bue Lt | 1435 | 1.895 | 2.865 | 2.098 | 3.400 | 5.405
§ 1 706 | 880 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 5.04l
o | .73 | s3] L.100 | 1.383 | 1833 | 2.262 | 2.821 | 3.250 | 4.781
10 | 7001 .879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.160 | 4.587
1) 697 ] 876 1.088 | 1.363 | 1.706 | 2 201 | 2.718 | 3.1068 | 4.437
12 1 695 | 873 1 1.08% | 1.356 | 1.782 | 2.170 | 2.681 | 3.055 | 4.3i8
13 0 6ot | 870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 4.221
141 puz | 868 L 1076 | L.345 | 1.761 | 2,145 | 2.624 | 2.977 | 4.140
5 | 601 | 866 1 OT4 | L3l | 1753 2.131 | 2.602 | 2.047 | 4.073
16 | 600 | 865 | 1.071 | 1837 | 1.746 | 2,120 | 2.583 | 2.921 | 4.015
17 1 680 | 863 | L.069 | 133l 1740 § 2,010 | 2,567 | 2.808 | 3.965
18 | ass | w62 | 1067 | 1330 | 1734 | 2 101 | 2.552 | 2.878 | 3.u22
10, 688 | 861 | 1066 | 1.328 | 1.720 | 2.003 | 2.530 | 2.861 | 3.8%3
20 68T | 860 | 064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.850
20 | 686 .89 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.819
22 | 686 | 858 | 1.061 | 1321 | 1717 | 2.074 | 2.508 | 2.819 | 3.792
20| .G85 | 838 | 1.060 | 1310 1.7LL| 2,060 | 2,500 | 2.807 | 3.767
24 % 685 | .857 | 1.059 | 1.318 1 1.701 | 2.064 | 2.492 | 2,797 | 3.745
25 , 684 | 856 | 1 058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.725
|
26 | 684 | 856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.770 | 3.707
27 1 684 | 855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.690
25 | 683 | 855 | 1.056 | 1313 | 1701 | 2.048 | 2.467 | 2.763 | 3.674
20 | 6831 .854 | 1.055 | 1314 | 1.600 | 2.045 | 2.462 | 2.756 | 3.659
3000 6831 8540 1.055 | 1.310 | 1.607 [.2.042°| 2.457 | 2.750 | 3.646
40 1 681 851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.351
60 | 670 | .B48 | 1.046 | 1.206 | 1.671 | 2.000 | 2.300 | 2.660 | 3.460
120 | 677 | 845 | 1041 | 1.280 | 1.658 | 1.980 | 2.358 | 2.647 | 3.373
w | 674 842 1036 | 1.282 | 1.645 | 1.960 ['2.326 | 2.576 | 3.29%
] N 1
0.25 } 02 o015 o1 |oos !oo02s | 0ol ‘ 0.005 | 0.0005
‘ff } i L. sy

Probability of a larger positive value of

Source: This table is abridged from Table III of Fisher and Yates, Stafistical Tables for
Biological, Agricultural, and Medical Research, published by Oliver and Boyd Ltd., Edinburgh,
1949, by permission of the authors and puyblishers. .
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174 Statistical Methods . Section 7.6
TABLE 7.6.1

CorRELATION COEFFICIENTS AT THE 5% AND 19, LEVELS OF SIGNIFICANCE

. -1
Degrees of Degrees of e ’

Freedom 5% 1% Freedom 507, 1%,
1 997 1.000 24 .388 496
2 .950 990 25 381 .487
3 .878 .959 26 374 478
4 .B11 917 27 367 470
5 .754 874 28 .361 .463
[ .707 834 29 355 4506
7 666 .798 30 . 349 449
8 632 165 35 .325 418
9 602 735 40 304 393
10 576 708 : 45 .288 372
11 553 .684 . 50 .273 354
12 532 .661 60 250 .325
13 514 641 70 232 302
14 497 .623 80 . 217 V2R3
15 482 606 90 .205 267
16 468 ¥ .590 100 .195 .254
17 450 .575 125 174 .228
18 444 .561 150 .159 .208
19 433 .549 200 .138 181
20 .423 537 300 113 148
21 413 .526 400 .008 .128
22 404 .515 500 088 115
23 396 .505 ,000 . 062 081

2
[

Portions of this table were taken from Table VA in “Statistical Methods for Re-
search Workers” by permission of Professor R, A, Fisher and his publishers, Oliver
and Boyd.

The test of Hy: p = 0, Hy: p # 0 is made at sight in table 7.6.1.
Simply lock along the row for 4. = 7 and observe the position of the
sample r relative to the tabular values. Our r = 0.597 is considerably
less than the 59 level, 0.666, lcading to the same conclusion as helore.
The test is made without considering the sign of . Among the loliowing
correlations, observe particularly how conclusions are aftected by both
sample size and the size of r:

Number of Degrees of

Conclusion About
Pairs Freedom r Hypothesis, p = 0~
20 18 0.60 Reject at 19, level
100 98 0.21 Reject at 5% level
10 8 .60 Not rejected
15 13 —0.50 Not rejected
500 498 —0.15 Reject at 19 level

Those who wish a skelch of the main fealures of slalistics al first yeading may
well omit the remainder of this chapter, together with all of the next. Go to
chapter 9 if you wish to learn more of enumeration statistics, or to chapter 10 for
analysis of variance.
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